评估质量管理软件/系统(QMS)试金石--试用、试用、还是试用!

近年来,越来越多的企业进行了信息化建设。企业信息化失败,或者至少说是没有完全达到当初的预期,案例比比皆是。 那么,到底如何避免失败? 答:最有效的手段之一就是...
近年来,越来越多的企业进行了信息化建设。企业信息化失败,或者至少说是没有完全达到当初的预期,案例比比皆是。
那么,到底如何避免失败?

答:最有效的手段之一就是--试用、试用、还是试用!

为什么要试用?
买双鞋子,你都会穿上试一下,走几步看鞋子是否合脚,穿着是否舒服,是不是硌脚。
企业是如此多种多样,如此千差万别,而且企业为了竞争和生存,还一直处于不断变化之中,不试用一下,怎能知道这个软件是不是适合自己,是不是能够解决企业面临的问题?

很多企业管理者说,那我可以参观一下成功案例。通常是很难看到同行案例(只有为数不多的企业会同意同行参观),即使很幸运看到了同行案例,并且很成功,也无法证明适合别的公司的软件,就一定会适合自己的公司。还是同样的道理,只有自己的脚最知道鞋合适不合适。

在选择工业软件时,“试用”这一火眼金睛术可以帮助企业发现以下潜在问题:

1. 避免被高大上的PPT蒙蔽双眼。
老王卖瓜,自卖自夸。乙方有些吹牛成分可以理解。但有很多软件提供商喜欢语不惊人死不休,还喜欢新造一些词汇来唬人,比如什么人工智能、大数据,什么ERP+MES全方位解决方案,什么万物互联,好像是一个全能的上帝,总之一句话没有他不能做的。对于这样的表演,一些人已经不屑一顾了,但绝大多人还是会被唬住。

pic01.jpg


 
这还没完,有些企业把PS本领也搬到了PPT产品介绍上,产品的界面P的非常酷炫;更有甚者,自己的产品没有这个功能,盗取同行的产品界面,放到自己的产品上去,宣称是自己开发的产品。
欺骗客户这事,可别以为只有中国软件企业这样做,美国和德国(美国和德国的工业软件比其它国家多)的软件公司也有这样干的,戳穿这样的把戏很简单,让乙方销售人员用他们的公司的实际软件系统现场展示PPT中出现的界面并走几个流程即可。

2. 现场演示也不一定完全可靠。
软件服务商在客户面前演示,所见即所得,这样该没有问题了吧?魔术也是在你面前表演,但魔术是真实的吗?在短短的展示时间内,客户很难掌握软件系统的全部,也不可能充分理解该系统。再说,乙方会100%毫无保留地展示产品吗?数据的前后逻辑关系是怎么得来的?计算结果对吗?
 
pic02.jpg



这里给大家介绍一个小技巧,如果乙方在介绍产品时,不停地在不同系统之间来回切换,你可就要小心了,该乙方的产品很可能不完善,是定制项目型的软件,没有办法在一个系统展示全部功能,所以要在不同系统之间跳来跳去。为什么对项目型产品要小心,道理也是很简单,失败概率大,详细论述可参见《质量管理系统(QMS)-6.自己开发,外包还是购买产品?》。

还有,展示期间甲方不太可能关注到全部细节,但有些细节又十分关键。例如,我们曾经发现多家软件企业(包括市场上一些常见的公司),其质量检验的取样规则违反了国标GB/T 2828.1—2012,系统上线后才发现,这时甲方该怎么办?如果甲方是知名企业且使用了这样低劣的软件,不仅没有对质量做到很好的管控,而且还会对企业商誉造成很大的潜在风险。

3. 验证操作界面是否易于一线员工理解。
如果不易于一线员工理解,实施会遇到很大的阻碍。还有,相对来说,一线员工的离职率比较高,如何让新员工快速掌握,不影响生产,也是一个不容忽视的问题。后期再培训的问题,在项目初期也要有所关注。

4. 乙方介绍的功能适合我们的企业吗?
语言沟通时不免有些歧义,实际测试一下系统便知,避免出现卖家秀和买家秀的问题。

 
pic03.jpg




除以上原因,试用还有其它益处吗?

5. 检验乙方软件的成熟度。
乙方在演示的时候,可以躲避一些软件的缺陷,甚至是Bug。 只要甲方在试用时比较细心,这些问题很难被隐藏住。

6. 考察乙方的实施能力。
专业实施能力是软件成功与否的另一个关键要素。甲方在试用时,必然会有一些问题,通过提出问题,就可以看出乙方是否是专业的质量人员,有没有专业服务能力。我们就曾经看到过,有些实施人员完全不懂质量,甲方人员还要花费时间告诉乙方软件公司什么是标准方差,什么是Cpk等专业术语。在这种情况下,还能期望实施过程中乙方给企业的流程带来优化吗?

很多企业购买质量管理软件的初衷包括希望通过实施软件把质量管控流程中不规范的地方一并梳理,如果乙方质量管理不专业,又如何梳理?

7. 让使用部门参与选择。
而不是完全由上级或者IT部门强行塞给使用部门一个系统,以便减少后期使用部门的抱怨和扯皮的事情。
给孩子买鞋子,最好带上孩子。

8. 员工有参与感。
可以根据甲方的实际情况,让多个层级员工参加试用。

9. 避免暗箱操作。
阳光是最好的消毒剂,让大家畅所欲言,把选择放在桌面上。这样选择出的系统,不会让大家失望。

10. 在签合同前,各方达成比较一致的意见。
通常测试是多人测试,给出的反馈更加全面,如果有意见不统一的地方,可以及早提出,避免后期的各种意想不到。

11. 尽量减少开口合同。
一些定制二开有时是不可避免的,但要在签合同时要做到心中有数,要在预算范围之内,如何才能实现呢?在IT部门的帮助下,让实际使用部门给出反馈,是比较接地气的办法。实际使用部门最清楚他们需要什么,什么是雪中送炭,什么是锦上添花,甚至什么是画蛇添足。
(这里的使用部门不能仅仅狭义地理解为质量部门,采购部门可能需要参考供应商质量表现,研发部门可能需要产品问题历史记录,销售和财务可能需要产品直通率来核算产品真实成本,高管可能需要产品质量整改进度表等等,不一而足。)


那么,甲方该如何进行试用?
试用的方法有多种,推荐一个即高效又可检验出乙方专业水平的方法。

第一步:甲方根据自身的需求,可以把相关的脱敏资料(可以公开的数据或者模拟数据)如,来料检验报告、过程检验报告、出货检验报告、客户投诉、评审报告、纠正预防(8D)、不合格品管理流程、以及质量月报等资料发给乙方。

第二步:由乙方搭建一个临时的测试系统,里面的物料号、工序、检验方式都模拟甲方真实运营的情况。

第三步:如果乙方是一个较为完备成熟的系统,可以很快搭建出来一个模拟系统,而不会用其它借口,什么审批之类的来拖延时间。

第四步:甲方按照实际生产和业务处理流程,录入一些实际的检验、不合格品、客诉等数据,不仅可以检验一下乙方的系统是否能够实现企业所需要的数据录入方式、报表分析效果,以及流程是否能够满足要求。还能够快速评估系统对当前需求的匹配程度、以及未来可能存在变化的灵活配置能力,并且可以通过这个模拟系统来进一步考察乙方对甲方的业务理解水平,以及技术支持能力。

第五步:通过测试系统,对于不能满足需求的地方,让乙方给出开发周期以及大致的报价,对项目的整体预算要做到心中有数。

第六步:对乙方的系统,人员专业水平,支持能力,价格等做出综合服务评价,选出合适的系统。

不同于购买一些传统的商品或服务,比如培训或者一个零件,这些都是某种程度上的短暂、小范围合作。购买工业软件就完全不同了,会涉及到多个部门,并且会对企业带来长期影响。不仅仅是系统上线那一时刻的服务很重要,更要考虑到乙方是否能够长期持续地提供基于系统的专业技术服务。选择错了,可能不但帮不到企业,反而成为负担。
收起阅读 »

优思学院|不可不知的FMEA分析

FMEA最早在美国武装部队军事程序文件MIL-P-1629(1949年)中出现,文件其后在1980年修订为MIL-STD-1629A。到了20世纪60年代初,美...
FMEA最早在美国武装部队军事程序文件MIL-P-1629(1949年)中出现,文件其后在1980年修订为MIL-STD-1629A。到了20世纪60年代初,美国国家航空和航天局(NASA)也开始使用FMEA,早期的FMEA也称作FMECA。由此可见FMEA的使用在于极重要的流程上,因为它是一套分析风险的工具,风险的成本代价越大,分析的重要性便更大。这也是今天华为研发这么看重FMEA分析的原因。

失效模式与影响分析(英文:Failure mode and effects analysis,FMEA),FMEA是用来预测潜在的失效模式的发生和它所带来的影响,从而管理过程的风险,简而言之,是一种风险评估的工具。优思学院|六西格玛培训整个工具的重要一环是为各个过程和特性,计算出风险指数(RPN),以评估风险优先级数的一种衡量指标,有助于识别与您的设计或过程相关的关键故障模式的潜在问题,从而预先采取必要的控制或预防措施,以提高产品的质量和可靠性。

  收起阅读 »

为什么会有人质疑SPC?

注:本文初次发表于公众号“质量管理与工具实战交流平台”上。  不久前,流传着一篇题为《质量管理软件(工具)中,SPC真的有用吗?》的微信公众号文章...
注:本文初次发表于公众号“质量管理与工具实战交流平台”上。
 不久前,流传着一篇题为《质量管理软件(工具)中,SPC真的有用吗?》的微信公众号文章(读者可在微信中的“搜索”查看一下),该文章把SPC批了一个“体无完肤”。其中的观点当然是错误的,业界也相应地出现了一些纠正和澄清的文章。

与直接的纠正做法不同的是,我从另一个角度对这个问题进行了思考:为什么有人会对SPC存在着误解和质疑呢?

事实上人们在学习和使用SPC时存在着大量的误区,尤其是关于SPC的理论基础、准备工作、使用前提、使用前对所控制的过程的初始研究等,这些方面在讲解和学习时被忽视了,只注重了步骤,尤其是把AIAG发布的《SPC参考手册》当作了一种标准条款来解读和使用,这就很难使SPC得到正确的理解和应用,带来的效果就可想而知了,这就会让人误认为SPC是一种没有实用价值的、过时的理论了!

我最近更新了我的SPC课程,着重强调和强化了这些容易被忽视的方面,在本文中限于篇幅,我只是列举其中的一部分控制图中的常见问题。下列方面比较普遍:

第一,缺乏必要的数理统计知识
SPC是基于数理统计理论建立起来的,这就对数理统计基础比较欠缺的人来说,想在有限的时间里理解它的基本原理确实是一个比较严峻的挑战。这些相关的理论至少包括:随机变量、分布、正态、中心极限定理、抽样分布、甚至假设检验等理论讲清楚!只有理解了这些数理统计概念,才能掌握SPC的底层逻辑,才能应对变化万千的制造过程和工作场景,否则,只学习基本的步骤和生硬的规定,接下来所学的SPC就会百无一用了!所以,在讲解和学习SPC的基本知识时,这一块是决不能回避的。 

image001.jpg


image002.jpg


上图中的注释不是具体的失控判断准则,后面还有对每条准则的详细讲解。

第二,SPC的准备工作不充分
1、资源是制约SPC推广应用的重要原因。当前随着制造业自动化、智能化的日益普及,已经越来越多地实现了在线100%或连续检测,一天可能会产生海量的数据,如果还是采用那种几十年前的那种原始的方式,由人工进行数据的采集、上传、分析和报警,效率是很低的,也是不够精确的,好马应当配以好鞍,需要借助于自动SPC系统,必要时与企业的ERP系统相融合,这样才能做到自动、实时、快速地对失控做出反应,减少报警停线带来的损失。

2、与海量数据的情形相反,还有另一种极端的情形,就是感觉没有适合于SPC管控的特性,特别是在一些组装生产线上,或者在一些破坏性测量的工位上。这就需要用一些“前端工序的特性”、“过程特性”使用控制图,或者测量成本较低且与之相关的特性来替代。

image003.png


image004.png


image005.jpg


image006.png


3、工作流程上的保障。请问SPC只是质量工程师们的事吗?我们需要一个工作流程上的保证,这样才能够保障SPC能够持续地进行下去。SPC是跨部门的工作,尤其是生产、设备、工艺部门、质量部门共同的职责,需要基于工厂的实际,进行合理的分工与协作。

image007.png


4、有的人不知道应当在什么时候导入SPC,或者生产过程中尚有一堆问题等待解决时就导入SPC,结果是不能建立起控制限,因为总是存在失控!因此,当过程中还有显而易见的问题未得到解决,还在产生着大量的不合格时,使用控制图是没有任何意义的!

5、我们经常得到下面这样的图形:

image008.jpg


很显然,这是测量系统的分辨率不够的缘故,这要结合制造过程本身的变差,如果变差足够小,这就要求测量系统的分辨率更小,至少要做到1/10的过程变差:1/10×6σ。下图是使用不同分辨率的量具测量同一组样件的结果对比:

image009.png


因此,做好控制图,如果过程是高精度自动化的,测量系统/量具本身就是一个挑战。

第三,缺乏对所控过程的了解
1、不了解数据的分布状态。对于常规控制图来说,在建立控制限时(控制图的分析阶段)是有着一定的前提的(随机、独立、正态),其中要保证图上的点所对应的数据呈现正态分布或者近似正态分布,否则,所建立起来的控制限就会产生假报警或漏报警,就是我们常讲的第一类和第二类错误!

那么这个“近似正态”到底是可以近似到什么程度呢?这是一个容易令人困惑的问题。

有人或有的SPC书籍中认为,先把控制图做出来,如果真的数据不正态,就会通过失控来表现出来(报警),到时候你不就知道了吗?这种说法在正式的在线控制时是正确的,毕竟SPC实质上就是一个大号的假设检验嘛,但是,在建立控制限的分析阶段,是存在着一定的“灰色地带”的,会存在一种“既不是正态,同时又不失控报警”,只是“潜伏”的情形!或者在建立控制限时出现了失控的点,于是去寻找过程中的问题,如果找不到,那么到底是专业知识不够呢,还是本来过程就没问题而是因数据不完全满足正态的条件所生产的假报警呢?难以分辨吧!所以在这样的条件下建立起来的控制限是不够严谨的,仅仅说“近似正态”其实是没有实操价值的!在控制图的分析阶段,我们需要确定的是一个准确的基准-控制限。

image010.jpg


因此,我们至少要确保样本的均值之间要呈现正态分布,这就是所说的“原始数据可以近似的程度”衡量依据!

要确保样本均值之间为正态分布,就应当使用正确的样本量,所谓的“小样本、短周期”的抽样方式,只是在原始数据正态的前提下是合理的,如果原始数据不正态,我们应当在确认制造过程当中没有特殊原因的前提下,适当加大样本量,以使得均值之间为正态分布(依据中心极限定理),或者通过其他的手段,如非正态向正态的转化、寻求个体分布的参数、非参数等,而不是生搬硬套、千篇一律地使用同一种控制图(如均值-极差图)。看来这也是SPC“曲高和寡”的原因之一吧,因为它确实需要使用者具有较高的数理统计功底的。

2、不了解所控制过程的特定失控模式。我经常听到过这样的反馈:导入SPC后失控报警了总是找不到原因,太影响生产了,后来我们就干脆又把SPC撤掉了。这是多么遗憾的一件事啊!

这是什么原因呢?其中的原因有:建立控制限时所用样本不能代表和包含实际过程的变差,使均值图的控制限过窄,盲目使用那常用的8个判异准则、缺乏事前对过程失效模式的分析(与PFMEA的对接)等。对于一个特定的加工过程,我们用控制图来控制的特性应当会从PFMEA中找到相应的失效模式及失效起因,即使没有做PFMEA,我们也应当事先来分析和识别出一些发生频度较高的失效起因,评估这些起因如果存在,会在控制图上引起哪种类型的失控模式,从而确定我们要采用哪几个判异准则(超控制限这个是必须使用的)。这样把工作做到前头,一旦将来出现失控报警,就会沿寻着事先的分析路径,快速把失控搞定,使过程恢复受控状态。

例如,气动夹紧工装,可能会出现气体管路漏气或螺丝松动的问题,如果使用控制图对夹紧力进行监控,那么可能会出现下列失控模式:
 
image011.jpg


因为一旦气体发生泄漏或螺丝产生松动,其程度就会快速地恶化,反应在夹紧力上就是逐渐下降的趋势。在对夹紧力使用控制图控制之前,就应当先将这些可能的因素和由此引起的失控模式识别出来和确定下来。
再如,当加工的基准面的定位不正确时,就会出现下面这样的失控模式:

image012.jpg


那么你的过程存在基准面变动的因素吗?

3、对抽样的时机制定太死板。对于一个过程,人员/班次、原材批次的更迭,还有设备的重启、重设等都是产生显著变差(特殊原因)的机会,如果只是机械地等时间间隔来抽样,就会错过这些变差机会,所以还需要基于所控过程的要素(4M1E)水平更的迭来有针对性地抽样,以便及时捕捉变差和可能的特殊原因。

第四、出现失控后不明确如何反应
大家都在注重如何制作控制图,如何判断失控,却没有一个明确的规则来说明出现失控后如何反应。在AIAG的SPC参考手册中也没有明确的规定。

对于不同的失控模式,我们需要做出不同的反应,这包括下列选项:分析原因、停止生产、隔离产品。在我的课程中进行了讲述。例如,对于下列失控模式,我们应当停止生产、隔离产品:

image013.png


再就是,产品被隔离后再怎么做呢?在上述情况中,应当是进行PPK(注意这时不应当是CPK了)的研究,看是否已经低于了PPK目标值了,如果是,就应当按照与客户的约定进行处置(发货前全检或者追加抽检等)。
而对于下列情况,只需要分析原因:

image014.png


还有一个需要澄清的问题,就是“失控ARL”(平均运行长度)。当均值图上有点发生失控后,在所发生的点上看不到这个失控,直到再抽若干次样后才在图上表现出来,这样的平均抽样次数为失控ARL。在AIAG的SPC参考手册中,只是提到了“受控ARL”,即两次假失控报警之间的平均运行长度(抽样次数)。

image015.jpg


image016.png


image017.png


在控制图的实际运用过程中,失控ARL是相当重要的,如果没有这个概念,当失控时,就不能隔离出所有的可能受到影响的产品。

第五、控制图长期不更新
虽然在分析阶段建立的控制限是在线使用阶段的控制基准,一般不能进行更改,但是在下列情况下,应当适时更新:
过程进行持续改善后,或者增加了过程的防错后,应当重新计算控制限,否则就会失去应有的灵敏度。在所控特性的目标值发生变更时,也应当重新设置控制限,因为目标值变了,相应的加工基准也要做出改变,过程的均值也会发生改变,若还是保持现有的控制限,就会出出均值偏移的“失控”。

限于篇幅,就写到这里吧,其实我的更新版的SPC课程中还有更多的与众不同的亮点的。
 


收起阅读 »

质量管理的两个笑话

偶感,质量管理的两个笑话。有看懂的么? 1、脱离实际客户和产品谈质量; 2、脱离实际问题及情景谈方法论及解决方案;   请大家不要一味地抱怨,说这两个笑话的本意...
偶感,质量管理的两个笑话。有看懂的么?
1、脱离实际客户和产品谈质量;
2、脱离实际问题及情景谈方法论及解决方案;
 
请大家不要一味地抱怨,说这两个笑话的本意也不是抱怨质量&质量管理。
质量本身的存在就是取决于产品的固有特性及客户需求,现在很多人直观OK不OK?而不管是否满足客户需求!
同样质量管理,见过很多不管公司经营目标,直管是否符合规格,条款。将质量管理凌驾于产品,公司经营之上。
这样的话就失去的质量以及质量管理的内在意义。所以很多抱怨!~~~~
 
问题同样如此。 收起阅读 »

实验设计中如何判因子之间的断嵌套与交叉问题

是交叉还是嵌套 (引用百度文库资料整理)   例子一:考虑车工车间在生产标准螺钉时的直径波动过大问题。   随机选取3 名工人,各自分别加工出4 ...
是交叉还是嵌套 (引用百度文库资料整理)
 
例子一:考虑车工车间在生产标准螺钉时的直径波动过大问题。
 
随机选取3 名工人,各自分别加工出4 颗螺钉,然后在每颗螺钉的根部随机选取两个相互垂直的方向,分别测量其直径,共得到24 颗数据。将"工人"这个因子记为因子A ,将 "螺钉" 这个因子记为因子 B ,那么, A 与 B 两个因子间是什么样的关系呢?
 
由于每个工人生产的4 颗螺钉,是分别附属于相应的工人的。 即使我们将这些螺钉都编号为 1 , 2 , 3 , 4 ,但是很明显,工人A 和工人B 之下的编号皆为1 的两颗螺钉并不是同一件东西。这时,称因子B "螺钉"是被因子A"工人"所嵌套着的 (Factor B is nested with factor A) 。很明显,此种情况下的两个因子所处的地位是不能被颠倒过来的。
 
然而,在实际情况中,两个因子间还可能存在另一种关系。例如,3 名工人轮流使用共同的4 台编了号的车床,每个工人都使用了车床 1, 2 , 3 , 4 ,这时,工人A 和工人B 之下的编号都为 1 的两台车床是同一件东西。 而且可以反过来说,每台车床都被3 名工人使用过。这时,称因子B "车床"是与因子A "工人"相交叉 (Factor B is crossed with factor A) 。很明显,如果这时  候说因子A"工人"与因子B "车床"相交叉也是同样的,它们的位置是可以颠倒过来的。这里要注意,单从树状图上是不能区分两个因子的关系是交叉还是嵌套的,只能从实际意义判断之。
 
例子二:选取3 名工人,让他们使用编好号的 4 台车床,按随机顺序各自分别加工出 3 根立轴。
 
若将与因子A (工人) 及搭配的因子B ( 车床) 的每台车床编好号,则可以发现,因子A (工人)与因子B (车床) 间的关系是交叉关系。 注意,它们两因子间可以颠倒顺序,即可以反过来说,因子B (车床) 的每个值也都与因 子A (工人) 的每个值搭配过。
 
如果车床不是固定的编号的车床,而是每个工人各自有自己固有的4 台车床,这时因子A (工人)与因子 B(车床) 间的关系就不再是交叉关系,而是嵌套关系了。  
 
例子三: 现在讨论三因子问题。由于不能将立轴(半成品尺寸/材质等等)之间的变异看成随机误差,因而要求将立轴之间的变异也看成因子,即形成三因子问题。这里3 名工人 (因子A) ,分别使用己选好并编了号的4 台车床(因子B),各自分别加工出3 根立轴 (因子C),然后对每根" 立轴测两次直径(误差)。由于因子B 的4 台车床是固定的,所以工人(因子A) 与车床 (因子B) 之间是交叉关系,而立轴 (因子C) 则是被A 与B 所嵌套的,即三因子是先交叉后嵌套的关系。
 
如果,将例子10-3 的安排稍加调整: 3 名工人 (因子A) ,分别使用自己固定的4 台车床(因子B),各自分别加工出3 根立轴 (因子C)。,这时因子间的关系就会发生变化。这时B被A 所嵌套, C 被A,B 所嵌套,这种关系也被称为全嵌套关系 (fully nested) 。 
 
实际问题中可能有多种结构,但仔细分析它们的数据就可以发现,因子间的关系无非 是嵌套或交叉这两种基本类型。有时在实际问题中可能遇到的是因子个数较多,关系较复杂,这时需要仔细分析处理。

1.png


2.png


3.png


4.png


5.png


6.png

  收起阅读 »

聊聊新版FMEA手册中的MSR

今天和大家聊聊新版FMEA手册中的MSR,不是MSA.
今天和大家聊聊新版FMEA手册中的MSR,不是MSA.

第五版FMEA手册AP评价表公式分享

质量工具的 FMEA 在2019年进行更新,取消了S*O*D=RPN的RPN值,改用组合方式的AP值,改用AP后FMEA表再使用的Excel完成时因为是组合方式...
质量工具的 FMEA 在2019年进行更新,取消了S*O*D=RPN的RPN值,改用组合方式的AP值,改用AP后FMEA表再使用的Excel完成时因为是组合方式(如下图),常规公式不易计算(我能想到的就是借助辅助表,把SOD文本先结合起来然后使用查找函数查找字符串的方式进行计算)
我的方法是使用一个自定义公式的进行计算AP值,使用的时候直接使用=AP(S,O,D)(SOD为这个自定义函数的三个参数)的方式获得对应的AP值,使用的效果如下图,代码分享如下,对代码进行了稍微的注释,方便不熟悉的朋友们理解
(结尾有这个自定义函数的添加过程,只分享该方法,模板源文件抱歉无法上传,请朋友们谅解)搞质量又没学习过VBA的朋友应该用得上,但是这个方法有缺点因为要使用VBA,所以模板表需要保存为带宏的.xlsm 文件,做为使用人员如果不清楚把它保存为普通文件,公式会被丢失掉导致错误;
VBA大神来看的话是很简单的,欢迎各大神分享其它更方便的解决方案
 ’-----------------------------------------------------------------------------------
Function AP(S, O, D) As String 
’声明一个自定义函数,函数的参数为S、O、D 三个参数,输出结果为文本型
 
S = Application.WorksheetFunction.Substitute(S, " ", "")
O = Application.WorksheetFunction.Substitute(O, " ", "")
D = Application.WorksheetFunction.Substitute(D, " ", "")
S = Application.WorksheetFunction.Substitute(S, Chr(10), "")
O = Application.WorksheetFunction.Substitute(O, Chr(10), "")
D = Application.WorksheetFunction.Substitute(D, Chr(10), "")  ' 注释:将S O D的空格和换行符两个常见非法字符删除,避免出错

If Not S Like "[1-9]" And S <> 10 Then
    AP = "S值错误"
ElseIf Not O Like "[1-9]" And O <> 10 Then
    AP = "O值错误"
ElseIf Not D Like "[1-9]" And D <> 10 Then
    AP = "D值错误"   ' 注释:判断S O D是否为数字1-10,如果不是函数输出为值错误
Else

    S = S * 1
    O = O * 1
    D = D * 1  ' 注释:S O D 转化为数值处理,防止文本型数据导致出错
    
    Select Case S
        Case Is >= 9
            Select Case O
                Case Is >= 6: AP = "H"
                Case Is >= 4
                    Select Case D
                        Case Is >= 2: AP = "H"
                        Case Is = 1: AP = "M"
                    End Select
                Case Is >= 2
                    Select Case D
                        Case Is >= 7: AP = "H"
                        Case Is >= 5: AP = "M"
                        Case Is <= 4: AP = "L"
                    End Select
                Case Is = 1: AP = "L"
            End Select
        Case Is >= 7
            Select Case O
                Case Is >= 8: AP = "H"
                Case Is >= 6
                    Select Case D
                        Case Is >= 2: AP = "H"
                        Case Is = 1: AP = "M"
                    End Select
                Case Is >= 4
                    Select Case D
                        Case Is >= 7: AP = "H"
                        Case Is <= 6: AP = "M"
                    End Select
                Case Is >= 2
                    Select Case D
                        Case Is >= 5: AP = "M"
                        Case Is <= 4: AP = "L"
                    End Select
                Case Is = 1: AP = "L"
            End Select
        Case Is >= 4
            Select Case O
                Case Is >= 8
                    Select Case D
                        Case Is >= 5: AP = "H"
                        Case Is <= 4: AP = "M"
                    End Select
                Case Is >= 6
                    Select Case D
                        Case Is >= 2: AP = "M"
                        Case Is = 1: AP = "L"
                    End Select
                Case Is >= 4
                    Select Case D
                        Case Is >= 7: AP = "M"
                        Case Is <= 6: AP = "L"
                    End Select
                Case Is >= 2: AP = "L"
                Case Is = 1: AP = "L"
            End Select
        Case Is >= 2
            Select Case O
                Case Is >= 8
                    Select Case D
                        Case Is >= 5: AP = "M"
                        Case Is <= 4: AP = "L"
                    End Select
                Case Is <= 7: AP = "L"
            End Select
        Case Is = 1: AP = "L"
    End Select
    ' 注释:按第五版标准 AP 表对SOD进行对照得到AP值,输出为函数结果
End If
End Function
‘-----------------------------------------------------------------------------------
以上是代码,添加操作过程如图示(简单图示,方法有很多),完成后就可以正常使用=AP(S,O,D)的自定义函数了
注意最后EXCEL文件请保存为.xlsm格式或.xls格式,普通的xlsx文件不能被存放代码
  收起阅读 »

谈谈测量系统分析的另一种方法VDA5

你知道吗,测量系统分析方法其实不仅仅只是我们常见的AIAG的《MSA 参考手册》中的那些方法,还有VDA 5。 我们都知道,在I区,坏零件永远判为坏零件,在II...
你知道吗,测量系统分析方法其实不仅仅只是我们常见的AIAG的《MSA 参考手册》中的那些方法,还有VDA 5。
我们都知道,在I区,坏零件永远判为坏零件,在III区,好零件永远判为好零件。当测量值落在规格限附近时,即II区时候,可能对零件做出错误的决策,如合格的判为不合格,不合格的判为合格。

MSA给了一个概念性的方向:改进生产过程来减少过程变差,尽量不要让零件落在区域II,或者改进测量系统,以减少II区的面积,来减少做出错误决策的风险。如何决定II区,MSA手册并没有给出明确的指导。

但在VDA5中,给出了科学的方法。如果供应商的测量值在规范内,而你的测量值在规范外,是判定合格还是不合格呢。和MSA手册里类似,落在区域3,证明合格,落在区域4,证明不合格,落在区域5,属于不确定区,无法判断合格还是不合格。关键的是,VDA5中给出了方法来确定不确定区-参照ISO14253-1来做确定不确定区域(即5区)。

VDA5符合国际标准GUM和VIM的要求,术语和定义与国际标准保持一致。VDA5评估不确定度的方法分为A类不确定度和B类不确定度,结合现有在企业运用的MSA分析中的方法一,方法二或方法三的结果,将量具的分辨率,偏倚,测量标准件的重复性,测量工件的重复性,操作者间的再现性,均转化为不确定度的分量。

提出了处理线性,温度,被测件本身的不均一导致的不确定度

对于测量系统的验收,测量过程能力的证明,将测量结果应用于于产品符合性判断中,VDA5提出了非常有益的应用上的指导。

VDA5是一种简化的GUM的方法,将MSA的结果和GUM结合起来,程序简单,便于实践。它的一般程序如下图:
 
见附件 收起阅读 »

Excel VBA完成的SPC函数 直方图 控制图等工具免费送给同行

两年前花了大精力VBA编写的QC人员使有的工具,原有偿注册,现在免费赠送注册码,别问我为什么,只想与您相互学习! SPC一键做图:直方图、控制图、柏拉图等 QC...
两年前花了大精力VBA编写的QC人员使有的工具,原有偿注册,现在免费赠送注册码,别问我为什么,只想与您相互学习!
SPC一键做图:直方图、控制图、柏拉图等
QC工具:根据上下限和目标CPK创建正态随机数据(造假数据责任自负)、解除工作表密码保护、清除所有公式、清除超链接等
 内置函数:CPK、PPK、PP、FP、PPU、PPL、CPU、CPL、CP、k、RANDS(正态随机函数)等
如何使用教程:
链接:haokan.baidu.com/v?vid=4517317753939674902&pd=pcshare
自己增加https://
  收起阅读 »

质量管理软件(工具)中,SPC真的有用吗

1 前言 SPC(Statistical Process Control)控制图自从休哈特1924年发明以来,在以汽车行业为代表的制造业中被广泛用来监控和改进...

1 前言
SPC(Statistical Process Control)控制图自从休哈特1924年发明以来,在以汽车行业为代表的制造业中被广泛用来监控和改进生产过程,试图通过产品质量特性变化趋势来进行质量预防,改变旧有的事后质量检验的方式,来降低质量成本,并被列入汽车行业质量管理五大工具之一。
我们的疑问是:
1. SPC理论自身有缺陷吗?
2. SPC应用的实际效果如何?
3. SPC适用于所用的行业和企业吗?
其实,在以制造业强国美国为代表的国家中,不论是统计专家还是质量专家,针对SPC的实用性以及有效性的思考和质疑之声,从来就没停止过。日本更是以实际效用为准绳,而不是在实际推广中原封不动地照搬照抄SPC。
对于SPC的质疑与争论,一方面是因为观点不同,但更重要的还是希望企业能够结合自身实际有效选择最优性价比的质量工具,去掉浮华,让企业的质量管理落到实处。
2 SPC的由来
SPC控制图,又叫休哈特图。
上个世纪20年代,贝尔实验室被电话传输系统的稳定性所困扰。因为放大器等设备需要被埋入地下,贝尔实验室有非常强烈降低不良率以及维修率的业务需求。到1920年的时候,贝尔的工程师们已经意识到降低制造过程中变异的重要性。同时,贝尔的工程师们也意识到针对不合格进行的持续的过程调整,实际上增加了制造过程的变异并降低了品质。
休哈特将问题归结于变异中的普通原因和特殊原因。1924年5月16日这一天,休哈特把大家都熟悉的正态分布图旋转了90度,并以μ±3σ作为控制限,这就是控制图的原型。休哈特将这不到一页纸的内容交给了时任老板George Edwards,最初的判异准则也只有一条,就是看数据是否超出μ±3σ控制限。
 
根据判异准则,判断制造过程是否有影响产品某一质量特性的特殊原因出现。一旦出现,就需要查出异因进行整改。如果一个产品有多个质量特性需要监控,那么就需要分别做控制图。
自控制图出现以后,变异分为普通原因和特殊原因,这个人为的划分被一直沿用至今,判异准则越来越多,各种控制图也不断涌现,成为一个庞大的家族。其中,以均值极差控制图(Xbar-R)最常用,本文如无特指,所说控制图就是指均值极差控制图。
3 国际权威人士对SPC的质疑之声
1981年 田口玄一(Genichi Taguchi)
--来自日本,享誉全球的质量大师,创造了田口方法,品质工程的奠基者。
他曾说过“改进要有经济合理性,不能没完没了”。
“Taguchi (1981, p. 14) advocated reduction of variability until it becomes economically disadvantageous to reduce it further. “
摘自《On-Line Quality Control During Production》
1991年 Keki R. Bhote
--哈佛大学博士,摩托罗拉质量和保证部总监。
美国ASQ(休哈特是该组织创始成员之一) 的CQE考试将他其中一本书列为统计原理及应用部分8本参考书之一。
但Keki R Rhote依然直言不讳的说,控制图“纯属浪费时间”。
 
“ASQ lists Bhote (1991) as one of eight books suggested in the reference materials for the statistical principles and applications portion of the CQE exam. This is very odd, to say the least, since Bhote (1991) refers to control charting as “a total waste of time”.”
摘自《World Class Quality: Using Design of Experiments to Make It Happen》
1993年 Banks David
--美国统计局首席统计师,美国统计协会董事会成员,曾获得ASA创始人奖,美国统计协会的最高奖项。
Bank, Hoyer, Ellis和其它人都曾严厉地批评对SPC开展的研究工作,Banks说,“SPC大约是旧时代大学研究人员通过普通人难以理解晦涩公式来赢得名声的无用工具。”
“Banks (1993) and Hoyer and Ellis (1996 a–c), among others, have been very critical of research on SPC. Banks writes, for example, “ It is probably past time for university researchers to drop stale pseudo-applied activities (such as control charts and oddly balanced designs) that only win us a reputation for the recondite.”“
摘自《Is Industrial Statistics Out of Control?》
1997年 质量大师朱兰(Joseph Juran)
朱兰说:“发明出控制图原型的休哈特根本不懂工厂运营,完全没办法和操作工及管理人员进行有效的沟通”。
“It is often argued that Shewhart charts with 3- sigma limits should be used because experience shows this to be the most effective scheme and because Shewhart (1931, p. 277) stated that this multiple of sigma “seems to be an acceptable economic value.” Given this reliance on Shewhart’s opinion, however, it is somewhat disconcerting to read Juran’s (1997) surprising account that “Shewhart has little understanding of factory operations” and could not communicate effectively with operators and managers.”
摘自《Early SQC: A Historical Supplement》
1998年 Bert Gunter
--来自美国的著名统计顾问,《Statistics Corner》专栏作者。
也曾说,“使用SPC的制造环境在快速变化,生产时间变得更短,数据产生的更多,质量要求更高和对计算能力要求更强大,控制图这个古老的工具已经很难适应现代的生产和服务的需求。”
 
“The manufacturing environment in which SPC is used is changing rapidly. There are, for example, trends toward shorter production runs, much more data, higher quality requirements and greater computing capability. Gunter (1998) argues that control charts have lost their relevance in this environment, stating the reality of modern production and service processes has simply transcended the relevance and utility of this honored but ancient tool.”
摘自《Farewell Fusillade: An Unvarnished Opinion on the State of the Quality Profession》
2011年 Michel Baudin 
--40年实战经验的生产顾问。
“SPC是昨天的统计技术,用来解决昨天制造业的问题。它没有能力解决今天的高科技问题,在成熟的行业它也变得完全没有必要。它还没有完全消亡的原因是,它已经进入了客户强加给供应商的标准之中,虽然这些客户自己根本就不使用SPC。这就是为什么你仍然可以看到有如此多的工厂走廊墙上贴着控制图。“
“In a nutshell, SPC is yesterday’s statistical technology to solve the problems of yesterday’s manufacturing. It doesn’t have the power to address the problems of today’s high technology, and it is unnecessary in mature industries. The reason it is not completely dead is that it has found its way into standards that customers impose on their suppliers, even when they don’t comply themselves. This is why you still see Control Charts posted on hallway walls in so many plants.”
摘自《Is SPC Obsolete?》
以上这些是从1981年到2011年连续30年中,针对SPC公开发表不同声音的代表者。在国内,私下的抱怨很多,私下的质疑之声也不少,但目前为止还没有发现个人或团队对SPC提出公开质疑。
SPC拥趸者通常说:
你觉得SPC没用,是因为你没有真正理解SPC,或者你不会使用。
• 那么,上面列出的这些质量和统计界的大师都发出质疑之声,难道他们也没有能力正确理解或者不知道如何正确使用SPC?
• 如果他们都不能理解,那我们还能指望谁能够正确理解和使用SPC?
• 如果真的是如此难于理解,那我们还能指望生产一线员工正确理解和使用SPC吗?
4 日本SPC实际应用情况
也许很多人会说,战后的日本工业界在上世纪50年代至80年代期间广泛推广和应用SPC,使日本的产品质量一举超越美国并处于世界领先地位,似乎日本在质量上的成功就是应用了SPC。
事实果真如此吗?
以下摘自《Joseph M. Juran: Critical Evaluations in Business and Management》
 
 
大意是:
1. 在日本PCB行业,使用控制图并不普遍。更常用的方法是用单值描点图,并与公差限进行对比。
2. 日本公司普遍用长期记录不合格品的比例的方式,与P控制图相比,它没有设定控制限。
3. 在PCB行业,认为带公差限的单值描点图具有价值,因为这个方式可以帮助我们决定应该优先去解决哪个问题。
4. 如果数据在公差内表现的不错,就不会追求SPC没完没了的改进。
日本通常更是以效用为准绳,在实际生产中更普遍使用的是一些相对简单易用的工具,如柏拉图,直方图,饼图,散点图等,而不是依赖于SPC。
对于质量的追求也是在经济合理这个前提下,而不是无条件实施不能带来经济收益的无谓改善。
5 SPC自身有哪些缺陷?
5.1 自相矛盾的逻辑
为了简化论述,我们以最初休哈特制定的判异准则,是否超出3σ控制限这一个准则展开讨论,暂不考虑其它准则。应用SPC时,如果数据处于3σ控制限以内,通常认为过程变化通常只是普通原因引起的,没有特殊原因出现,无需改善;如果数据落在3σ控制限以外,则表明过程中有可能了出现影响产品质量特性的特殊原因,需要确认是否出现特殊原因,如果有则要采取措施进行改善。
• 因为按照休哈特理论,落在3σ以外的是小概率事件,要进行调查。同样按照分布概率,落在3σ以外也可能是正常的分布。
• 设备是多种多样的,有的设备稳定性足够高,就像戴明的漏斗实验一样,不改变漏斗高度,小球落点的离散程度不会改变,小球出现在4σ(或者5 σ)内也可能是普通原因。
• 但现在大多数的控制限是设置为3 σ。
 
对于稳定性很好的设备,如果数据超过3σ控制限就报警,那么工厂花费了大量时间和资源记录跟踪数据,得到的却是大量的假报警,工程师为此要疲于奔命,说是误入歧途都不为过,谈何帮助工厂改善质量?每天都在玩狼来的游戏?
根据下图,如果设备或制造系统稳定性很好,在4σ范围内都是普通原因,这时3σ为控制限,那么误报警率将高达(0.27-0.0063)/0.27=97.7%。
(当然,也可以把控制限设置到4σ范围以减少报警,问题是即使你掌握这个知识,但你的客户可能不同意你的要求,你购买的软件也可能没法设置,因为不是所有的SPC软件都有这个功能。同样,如果把控制限扩大,按照SPC理论,也会有增加漏报的风险。)
 
真正让生产员工迷惑的地方是,按照休哈特的理论,超出控制限有可能是普通原因也可能是特殊原因,让生产员工去调查,找到了就说是特殊原因,找不到,难道就是普通原因?
 
5.2 普通原因与特殊原因的划分
SPC的目的是通过控制图来探测制造过程是否出现了特殊原因,如果出现,那么先要加以分析,根据分析结果再决定是否进行预防和改善。
一般认为,特殊原因对过程影响较大或者特殊原因整改成本相对较低,但这都不是绝对的。目前也没有任何客观的真实数据来证实这一点,实际上只是人为地把分析找到的原因归到特殊原因而已。
假设我们还是按照普通原因和特殊原因来划分,在实际生产中,要获得更高的经济合理性,不一定是通过改进或消除特殊原因,更可以改进普通原因。比如说,企业在考虑成本的前提下,同时确保设备具有更小的波动性(普通原因),找提供设备的供应商来升级改造设备,因设备供应商比客户使用设备的人员更知道如何来提高设备的性能,这才是符合亚当斯密的劳动分工理论,专业分工,专业的人做专业的事。
从休哈特发明控制图100年来,社会化大生产已经发生了翻天覆地的变化,一台普通的设备通常是很多专业企业合作共同完成的,供应链不仅横向很广,纵向也很深,设备的精度和稳定程度在大踏步前进,留给客户操作人员改进的机会越来越少。通常而言,与其自己改进设备提高过程稳定性,不如找供应商直接升级设备或直接购买高性能设备更具有经济合理性。
当今时代企业的质量管理水平和产品的质量控制水平,也同样比100年前相比有了质的飞跃,主要的贡献来自于设备、工艺和配方等方面的进步,还有自动化监测手段的提升,而这些进步和提升大部分来自于普通原因,而不是依靠SPC不断探测特殊原因并改善取得的,这一点是毋庸置疑的。
我们几乎看遍能用谷歌搜索到的所有SPC视频课程,大部分讲师在介绍用SPC查找特殊原因时,给出的例子大都是换操作员工了,换原材料了,机器润滑不好了,螺丝松了,设备磨损了等等,这些的确会导致一些质量问题,也不是不重要,问题是企业有比SPC更加前置和高效的方法来预防这些问题,如,合格供应商名录,设备点检、维护和保养,员工上岗培训,分层审核,防呆等等。
实际生产过程中普通原因和特殊原因是会相互转换,不是一成不变的,这也是业界的普遍认知。
另外,普通原因和特殊原因,本就没有天然的界限。人为分为两种原因,把简单的问题复杂化了,然后再按照所谓的分类去解决所谓的特殊原因,这是从推广SPC的角度看问题,而不是从解决问题的角度看问题?
 
5.3 戴明和AIAG制定的判异规则会增加误报率
在控制图中,如果7点(注:也有是6点之说)或更多的点连续上升或下降,人工判断或SPC软件将发出警报。现在已有多人(Davis, Woodall, Walker, Philpot, Clement, etc. )要求取消戴明和AIAG制定的这个规则,因为这个规则在有些有意为之的过程里是无效的,虽然直觉上觉得合理,但结果只会大幅增加误报率。
 
内容来源《False Signal Rates for the Shewhart Control Chart with Supplementary Runs Tests》&《Performance of the Control Chart Trend Rule Under Linear Shift》
5.4 ASQ推荐的SPC判断规则也有无效的
ASQ推荐的用移动极差图来探测变异性中的变化这一标准做法也被证明是无效的。遗憾的是,该规则还是CQE考试的内容之一。
 
内容来源《Design Strategies for Individuals and Moving Range Control Charts》&《A Control
Chart for the Preliminary Analysis of Individual Observations》
6 实际应用中SPC有哪些硬伤?
除了上面说的自身缺陷之外,SPC在实际应用中也有一些硬伤。
我们首先以公差限范围和控制限范围的三种位置关系来分别讨论:
公差限范围远大于控制限范围:
随着当代生产设备、检测设备以及工艺水平等方面的不断进步,制造型企业对产品质量特性的控制能力已经远远超出100年前的水平。客户要求供应商的过程能力CPK在1.67以上,甚至2已非罕见,那么就意味着质量水平相当于5σ-6σ。
人工判断或SPC软件报警,但产品是合格的,质量人员如果这时花费精力去研究这个报警,让产品在合格的基础之上好上加好不是不可以,前提是没有其它质量不合格的事情发生,但在日常生产中比这严重和重要的事多得多,这么做从问题解决角度完全与二八定律不符。
这时控制图不仅没有好处,还帮倒忙,对于一个有着大量质量控制点的企业,质量人员还得费劲劳神不让这些不重要的事情干扰自己,还得从大量的报警中找出哪个是真正超过公差限的产品而不是单单超出控制限的产品。
世界著名500强公司施耐德,顶级电工企业,在华工厂应用控制图监控生产过程中的若干关键质量特性,但该控制图中只有公差限,没有控制限。因为如果设置了控制限,那么系统会经常报警,使本就繁忙的工程师们疲于奔命。他们也知道,因为是Xbar值,不是单点值,即使Xbar值在控制限内,产品也有不合格的风险。但是不取消这个报警,每天就不用做其它事情了,因为公差限远大于控制限,风险程度不高,就索性取消控制限。
 
请问,这些控制图在企业实际应用中到底起了什么作用?毫不夸张地说,它的消极作用之一就是浪费了资源。
公差限范围小于控制限范围:
通常理想状态,使用SPC时,要求过程稳定且CPK大于1。
项目在量产前策划阶段,对于具体的质量特性,企业工程技术人员通常预先评估采用哪种探测手段,并在过程开发时最终落实。比如可以用GO/NO GO检具100%检验或设计防错装置识别等,当然也可以使用控制图。
还有人会说,如果过程能力不足或者过程不稳定,通过控制图报警,这不是很好的机会改进产品质量吗?
未必,举个例子,公司在项目策划时选择设备有两个方案。500万的注塑机可以完全保证产品质量,50万的注塑机则需要加人工100%对质量特性进行检验,公司根据客户的采购量,通过成本评估确认50万注塑机+人工100%检验这个选项在利润角度更合理。
 
当今是专业化大分工时代,几个质量人员+设备工程师+一线操作工仅依靠一个SPC工具就可以把50万元的注塑机改进达到500万元注塑机的水平可能性很小。那些专业生产注塑机的企业可能都做不到的事,非专业人员就更实现不了;即使企业内部通过改进能够实现,成本上的花费很可能是不合理的。
这里不是反对持续改进,持续改进是一个企业永恒的主题,但我们反对的是一谈到质量控制,言必称SPC。
公差限范围略大于控制限范围:
这时的CPK大于1,可能有人会说,这种情况下SPC控制图最有用,但其实给一线操作员工和质量人员带来的困扰同样也不少,为什么?
如果控制图报警,一线操作员工也不知道产品是否合格,有时还要在控制图的边上再做一个单值描点图(日本一些企业的作法)。
有些控制图上加上了公差限,的确是有所改善,但还是有问题,因为在控制图上显示的是X的平均值,当X平均值在公差限以内时,产品还是有可能不合格的。(当然,这时R图往往会报警,但操作员工还得另行计算一下,确认产品是否超差,因为控制限报警和产品不合格是两个严重度不一样的事情,对于一线工人来说,首要任务是产品合格然后才是持续改进。)
其它因素还有:
无法满足现代企业的激烈竞争
现在的企业面临着越来越激烈的竞争。成本控制决定着企业的利润以及生存空间。
控制图需要持续不断地记录数据。一个控制图(均值极差控制图)只能监控一个质量特性,随着产品复杂度的增加以及供需链的不断变化,一个产品上会有多个关键质量特性,一个工厂有上万个料号是非常普遍的现象,那么可以想象,使用控制图对这些产品的大量质量特性进行监控,需要记录的数据以及需要付出的努力远远超出了企业所能承受的能力。
笔者曾经工作过的一家公司,每年都会进行供应商的整合(最近10年以来已经是普遍的现象),其中一个很典型的中小规模供应商,单单给笔者公司提供的常用活跃料号就有5000多个,其中一半以上是由数量不等的子零件组成的组装件(一个组件包含的子部件从10个到100个不等)。有外观,性能,关键尺寸等多个关键质量特性需要控制。如果使用控制图进行监控,那么需要做的控制图要多达几万个,效果如何不说,单是工作量已经将企业压垮。
更甚者,有些使用模具生产的产品,为了提高效率与降低成本,会以多模多穴的方式进行生产。如某公司一塑料产品有4个关键尺寸,该产品一共有2个模具,每个模具64穴,这些关键尺寸关系到客户产品的密封性能,塑料产品本身价值不高,但是一旦质量不合格,客户的损失将是非常巨大的。如果要取得客户订单,客户一定要求供应商签署质量连带责任协议。
 
如果使用控制图,每一次都要等到注塑机生产5个产品以后才能检验关键尺寸并记录,如果现场是纸质的控制图,操作工人还得计算这五个产品平均值和极差值,一个注塑工位就有4X64=258张控制图。两个模具,那么意味着要做2X4X64=512个控制图。如果这个公司有100个类似产品,那么意味着要有5万个控制图在生产现场。
每次注塑的时间间隔才几分钟,有时间记录吗?
用SPC软件能解决这些问题吗?
对于注塑产品,不仅要确保首件合格和末件合格,还要确保如何及时发现产品尺寸的变化,以便能及时清理冷却管路和维修模具,这对企业是一个极大的挑战。
如果您是这家企业的质量负责人,你会采用控制图来监控关键尺寸吗?您觉得控制图管的住质量吗?
对于芯片行业也类似,这个行业的数据量更大,SPC每天可能会发出非常多的报警,导致质量人员根本没有时间开展调查研究,很多质量人员的直接做法就是关闭这些报警邮件。不要指责这些员工,当你每天收到50份 SPC报警时,你会怎么做?
繁杂的系统,普通企业难于掌握
• 计算过程能力时,所采集质量特性的检测数据如果不是正态分布,需要做变换。
• 不同的过程,需要不同的SPC工具。
• 单一质量特性的数据是否独立,也会影响到使用效果,化工行业这个问题会比较突出,还要学会如何判断数据是否独立。
有办法解决这些问题吗?有。
这些问题难吗?看对谁而言。
 
问题的关键是,所有的企业都投入这么多的资源去研究这些,投入产出比对每个企业都合适吗?中国的中小企业有那么多资源投入去推广和研究吗?
再完美的设想,如果不能够满足实际生产现场的需求,那么也只能放在实验室里观赏。不能够为实际生产服务,那么也就失去了它的价值。
7 那么,到底谁在推行SPC?
客户要求
由于SPC是汽车行业五大手册之一,虽然只是参考,但是很多汽车行业的客户和其它行业的部分客户在对其供应商实施质量评审和项目开发过程中,会把SPC作为一个条目来考核供应商。为了提高通过第二方审核和第三方审核的概率,汽车行业供应商不得不在企业内推广SPC。
 
如客户对SPC有要求,评审时,评审员很正常地会问供应商被抽样到的产品有没有质量特性,供应商提供质量特性清单后,评审员很可能随意挑出一个或几个质量特性,看一看检测数据以及监控的效果,如果这时供应商能够展示出控制图,并且大部分数据是在可控制状态,有报警的地方,也有相关的分析和整改,在这样的情况下,很多评审员会认为这个评审条目合格,大概率不会一直查下去,直到发现问题。
我们回放一下真实的质量评审场景:
供应商老老实实把所有的质量特性都列出来了,如果质量特性很多,除非供应商有大量的专业质量人员,否则不大可能都做到监控,即使有SPC软件系统也不可能(因为设置监控要花费大量的人力和时间,这个成本是很高的,不是每一个厂家都能负担得起的。)
如果评审员发现有的质量特性没有被监控,很可能给一个一般或严重不合格项。
即使质量特性都被监控了,评审员在现场评审时,如果发现了控制图报警,但是供应商没有及时给出分析和整改措施,这就要看评审员心情了,至少给一个观察项,给一个不合格项也很合理。
 
如果你是供应商负责质量评审的,你会怎么做?
肯定会事先就准备好一套美化过的SPC数据,等待评审员的到来,这样才能很有把握地保证质量评审顺利通过,企业不会因为质量评审出现问题而拿不到客户订单,导致管理层对质量部门不满意。
我们先不要站在道德的制高点上批评供应商的质量负责人,想一想,供应商质量负责人这么做是否也是一种无奈?
德国大陆是一家非常知名的全球汽车零部件企业,其在华的一家工厂也遇到了SPC带来的烦恼。这家工厂每年要接待大量的客户二方年度审核、新项目审核和客户SQE定期检查及飞行检查,他们产品种类多,需要控制的质量特性也很多。
时不时,客户的质量人员就可能要求检查一下他们的产品控制图的填写情况,如果有异常报警,客户通常是一句话:你们要调查一下,写个整改报告。但供应商即使是编一个报告也要挺长时间,每天这么多的报警,如何应对?
编写假报告也要耗费大量的人力资源,不要忘记这一点。
后来这家工厂实在没办法,干脆招聘一个SPC数据“美化”技术员,每天专职美化数据,但数据也不是可以随随便便可以美化出来的,该工厂还用Excel编写个小程序,保证数据分布也是正态的,还能满足CPK的要求,极大提高了造假数据的效率,客户也很难再挑出毛病。这是笑话吗?但是质量人员根本乐不出来,他们有很大的挫败感,因为每天不得不做这些无聊没有意义的事情。
其实,这家大陆在华的工厂根本就没有用SPC来管控质量,但还不得不假装用SPC控制质量,并对客户宣称取得了很好的效果。
相对来说,国际大企业在理解SPC方面还是比一般企业要好,但他们为什么还要造假数据呢?
我本不想列出施耐德和大陆的名称,但我是想告诉大家,世界顶级的工业巨头尚且如此,您的企业实情如何?尽管有许许多多的企业都在使用SPC,但情况不容乐观,理想很丰满,现实却如此骨感。
培训/咨询机构以及SPC工具厂商
首先,我们不否定有优秀的培训和咨询老师,不仅有专业水平,也从企业的实际角度看问题。
但是,也有一些例外:
有些是自己本身都没有理解和掌握SPC的原理,完全的照本宣科,自己都不知道自己说的是什么。
有些是书本主义,没有考虑到实际应用环境。
有些是揣着明白,装着糊涂。赚的盆满钵满与自砸饭碗之间,选择的是前者。不想说皇帝的新衣不好看,反正有人肯花钱,不拿白不拿。
更有甚者,牵强附会的应用。Q-DAS,为了增强SPC适用范围,把简单的事情搞得很复杂。刀具的寿命对某些企业是一个比较关键的数据,比如用刀具的磨损程度来预计刀具的寿命,按照刀具的磨损程度绘制出一个带有倾角上下控制限,通过与刀具报废线的交叉点来估算刀具寿命。这个方法可以实现预测刀具寿命,但就是对工人理解上不友好,把简单的事情搞复杂了,用一个简单的描点图就可以实现的功能非得用繁琐的步骤实现。
这是郑人买履的平方。
 
质量管控的需求
自然还是有希望管理好企业的质量人在推广,希望能够帮助企业改善质量,这一点是不可否认的。
绝大部分管理措施出发点都是好的,但结果好不好就不一定了。
相比于其它质量工具,SPC耗费资源很多但产出却不高。就像用长矛来捕鱼,的确能捕到鱼,观赏性非常好,可以用来炫耀手艺,但不完全适合当今的社会。
比如说,DOE和MSA,对一个项目而言,不需要天天做实验收集数据。
但是SPC一旦开启,就要针对每一个料号的每一个需要监控的质量特性持续不断收集数据,如果有电脑系统还好,没有电脑系统,还得用纸和Excel统计。
在企业竞争如此激烈的今天,还要让一线操作工人花费大量的时间记录这些SPC数据,当然企业还要投入培训SPC费用等,但这些费用仅仅是SPC相关费用的冰山一角。
很多人忽视的是质量工程师所耗费的心血和时间。
一个企业如果质量特性少还好,如果质量特性很多,新项目也很多,质量工程师会花费大量的时间设置控制图和对报警的控制图进行处理。质量工程师不得不花费大量的时间处理这些不确定的报警,这意味着很多其它事情被耽搁了。
8 SPC不好用,企业怎么办?
现在有些人或企业认为质量管理就是SPC,甚至有些MES系统开发商,直接把SPC当作质量管理模块卖给用户,不知道是自己不懂,还是有意为之,实在是误人子弟。用户也应该理性地去分辨,不应该被神话了的SPC所误导。工具应该为目的服务。工厂需要的是一种符合自己生产过程的有效质量管控工具。质量管理也要考虑场合、对象和性价比。
在此我们从两个方面给一些建议:
从质量管控工具有效性层面:
日本企业为了弥补SPC的不足而同时使用单点图,当然还有其它工具,比如合格率、ppm、缺陷统计等。配合柏拉图的使用,可以帮助企业快速锁定影响产品质量问题的“重要的少数”,起到事半功倍的效果,以及根据记录的数据进行相关性回归分析,帮助企业快速找到影响质量特性的因素,从而进行相关改进,进行质量预防,改善产品质量。以相对较小的精力,解决严重和普遍的问题,这比较适合绝大多数企业的现状。SPC那种大水漫灌,换来的是虚虚实实的报警,烽火戏诸侯,浪费的不仅仅是大量的宝贵资源,更会错失很多问题改善的机会。
企业选择什么样的质量工具要根据自身的情况而定,不管黑猫白猫,抓住耗子的就是好猫。
客户和工厂需要的是合格的产品,SPC只是工具/手段,切莫将手段当目的。
从公司整体质量管理层面:
例子1,如果是一家生产纸箱,印刷品等技术含量不高的小企业,按照ISO9000的要求来做,就可能把企业管理的很不错。
例子2,如果一家电机厂有50条不同年代的产线,有2万种不同的物料,员工人数达到2000。企业发展到这个规模,可能以下问题是质量管理中的痛点:
• 什么原材料容易造成停工待料,都是什么问题?
• 那种类型电机合格率最低,都是什么问题?
• 给客户报价时,在那条产线生产,既能保证产品合格率又能保证成本可接受?
• 新产品开发时,类似的老产品都出现过什么问题?
这个规模的企业,质量体系早已经建立,质量特性数据也有一些,但是这些数据不是在纸质文档上就是在Excel中和其它系统中。这时企业可能需要一个能对多种物料,多条产线,多道工序,多个班组进行深度关联分析的系统以解决上述问题。
例子3,高压容器,安全设备等特种企业。
对产品安全性和合规性要求比较高。企业交货时,提供完备的检验资料也是一个很重要的工作,通常需要花费很大的人力和时间来处理。对于这样的企业,保证每一步都合规且文件齐全的管理系统很重要。
例子4,对于跨国采购公司和design house,有几十家甚至几百家供应商是很普遍的事,质量人员如何管理好供应商准时生产出合格产品很关键,否则就可能造成全球客户缺货或工厂停产。对供应商是否有能力生产出特定需求的产品要有把控能力,而不仅仅是根据质量评审的分数;开发新项目时对过往的历史数据和客户投诉了如指掌,并通过历史数据(包括客户投诉)有能力发现潜在的质量风险并在新项目开发时采取措施,;对出货检验要有大局观,既不能无原则放货,又不能把小问题无限放大不放货。如果该企业的产品种类高达上千种,供应商又分布在全国各地,但SQE人数却很少,这时的质量管理策略怎样制定才合理?
例子5,对于医药行业,一定要符合法律法规的要求,每一步都要确保正确和准确,文件资料不能出问题,人员要有资质才能上岗,变更管理比普通企业更严格,计量器具也不能忽视,很多记录都要留档等等,这是医药行业的特点。
例子6,对于化工和钢铁行业。如果质量管理软件或其他软件系统能自动推送出对产品改进有帮助的建议,企业或许对这个功能感兴趣,以代替用人工进行的繁琐计算,如回归分析、多元回归分析和DOE等,这样会极大提高日常生产数据的利用,从而不断优化生产工艺参数,改善质量和/或降低成本。
针对不同的公司规模、人员素质、不同的产品以及过程特性等,可以采用不同的质量管理工具进行管理。合适的就是最好的,既要防患于未然又要因地制宜,不能是用工具找问题,而是应当根据问题找合适的工具。
9 如何应对客户的要求?
前文做了很多论述,企业应该有自主权限根据实际情况来选择合适的质量工具。
但是对于SPC却很特殊,因为客户要求,还不得不使用SPC。 
这的确是一个难题,笔者在此也很难提供一个药到病除的解决方案。
供应商不可能冒着丢失订单的风险而违反客户的要求。针对五大手册中的SPC,是三大汽车主机厂(通用,福特,克莱斯勒)基于当初的现状,为了在汽车供应链中推动持续改进,以客户为关注焦点,不断提高客户的满意度,那么就需要不断地去寻求一种更高效率的方式来提供产品和服务。秉着这一宗旨,主机厂提出了组织的每一个成员都要投身于不断尝试更高效的方法进行持续改善,可以采用不同的统计工具达到这一效果,如柏拉图、因果图等基本工具,以及高阶的DOE、QFD等。并编制了五大工具之一的SPC手册。SPC控制图作为一种基本工具在SPC手册中做了详细的介绍。避免了当初无统一标准,各家各户要求各异,简化与减少了差异性。但该手册也明确说明这是针对SPC的一个介绍。企业根据客户要求的质量活动或者特性与客户沟通,可采用更有效的或者替代的方式。
解铃还须系铃人。 
在此我们也呼吁一下以汽车供应链为主的质量行业人士,特别是主机厂的质量人,主机厂和供应商要求的是合格产品和有效的管控方式,对于具体使用何种方式来管理质量,希望主机厂在制定规则时,能够与供应商进行密切沟通,只要供应商能够证明有合适的工具进行管控,有稳定的提供合格产品并进行持续改善的能力,不要非得加上SPC这一条,少些形式主义,回归到事情的本质。
10 编后语
在查阅资料的过程中,我们发现国外有非常多从不同的角度针对SPC是否有用进行讨论与质疑,从控制图诞生之日起到现在就没有停止过,而且还有继续下去的趋势。有争论比没有争论要好,理越辩越明。
有质疑和争论,受益的不仅仅是质量人士,更大的受益者是众多的企业和企业管理者。通过质疑和争论,企业高层将能会以更高效的方式来管控质量及管理企业,使企业运营效率提高,保持竞争优势,基业长青,对整个社会的整体运行效率也大有裨益。
在此,我们欢迎感兴趣的朋友和我们交流,不论是持相同的观点还是不同的观点。也非常欢迎亲自负责过或者使用过SPC并取得效果的朋友和我们联系,我们正在积极寻找这样的企业。
最后,感谢徐廷伟先生、王洪石先生、沈凯利先生、朱小泱先生提供宝贵的素材和意见。
云质信息科技有限公司-使质量管理变的简单和高效
提供质量管理软件开发,实施,咨询与培训服务一站式解决方案

收起阅读 »

正交设计的交互效应:新的思维方法

由于传统DOE和田口方法都有软件可轻松使用,初学者还要理解其内在的深刻思想。 有学者认为正交试验是一种认知和思维方法,其中最重要显示了复杂隐藏的交互效应。 ...


由于传统DOE和田口方法都有软件可轻松使用,初学者还要理解其内在的深刻思想。
有学者认为正交试验是一种认知和思维方法,其中最重要显示了复杂隐藏的交互效应。
传统的线性思维方法:
把整体作用看作是其部分作用之和,但是交互效应是一加一不等于二!
数学家尽可能把非线性问题转换成线性,是为了计算方便,数学模型变简洁。而人对复杂的客观世界用僵化线性思维方式,就会有片面性,甚至歪曲事物真实面貌。
笔者看到多元交互作用概念已经用于社会科学的文献,从宏观角度分析,在社会科学上应用比工程上应用更有深刻意义。
正如马克思所言:
任何一门科学只有充分利用了数学时,才能真正达到完善地步。
马克思写过微积分方面的论文,所以他所指的数学不会是算术水平。
但目前在社会科学中用百分比、平均数等算术概念太多。比如在定性分析时常会用非黑即白绝对性思维方法,而不是用模糊数学隶属度来度量。对未发生的决策常用肯定性的判定,而不是把思维因子处于0和1之间的概率思维方法。传统思维在博弈中认为只有非赢即输的结果,实际双方理智决策可双赢。
用交互效应概念可对某些社会问题有新的认识。
B0X戏称公鸡和母鸡关在一个笼子生出的小鸡就是交互效应。如公鸡母鸡关在独立的笼子里就生不出小鸡。
使人联想到贬义的剩余价值问题。
如雇主比作公鸡(或母鸡)、雇员比作母鸡(或公鸡),协作后产生的增值剩余价值比作小鸡。
传统说法雇主获得剩余价值就是剥削,社会主义市场经济现已淡化了,但未正名。因为非囯有经济对就业、产出、出口贡献远大于国有经济。
无论是雇主或雇员,如两者独立或缺一,就不会产生剩余价值。如两者对抗,产生负面交互效应,雇主破产、雇员下岗。
有的文献对交互效应的相关变量还分割为关键自变量和调节变量,如用条件效应解释交互效应,这二者可互换的。比如决定青铜强度的关键是铜和锡的比例问题,不必纠结銅贡献大还是锡贡献大。
正交试验中交互效应概念,不仅是统计学的概念,而且是认识客观世界多因子之间复杂纠葛的新概念。
  收起阅读 »

直积法和一表法本质差异

田口方法噪声因子定义是不可控的,但为了检验可控因子组合的抗噪性,人为设定上下限水平。 比如上限“十”,实际是有一定波动幅度的,即是随机变量。所以内表每一个组合至...
田口方法噪声因子定义是不可控的,但为了检验可控因子组合的抗噪性,人为设定上下限水平。
比如上限“十”,实际是有一定波动幅度的,即是随机变量。所以内表每一个组合至少和上限试验2次,而且不能同期试验,次序随机化。
而一表法减少了次数,但把噪声因子水平常数化,对噪声干扰能力的估计会不足,稳健性设计的可信度降低了。 收起阅读 »

新版DFMEA的边界图应用交流

FMEA第四版及之前版本,几乎没有涉及边界图的应用和分析。新版FMEA里面把边界图作为结构分析的一个重要组成部分,只有有效开展了边界图分析,才能更好的将设计识别...
FMEA第四版及之前版本,几乎没有涉及边界图的应用和分析。新版FMEA里面把边界图作为结构分析的一个重要组成部分,只有有效开展了边界图分析,才能更好的将设计识别并分解为系统、子系统、组件和零件。大家有边界图应用经验的,请分享一下或一起交流一下,谢谢!
boundary_diagram.jpg

  收起阅读 »

5W 整理

(1) WHAT——是什么?目的是什么?做什么工作? (2)WHY——为什么要做?可不可以不做?有没有替代方案? (3)WHO——谁?由谁来做? (4)WHE...

(1) WHAT——是什么?目的是什么?做什么工作?
(2)WHY——为什么要做?可不可以不做?有没有替代方案?
(3)WHO——谁?由谁来做?
(4)WHEN——何时?什么时间做?什么时机最适宜?
(5) WHERE——何处?在哪里做?
(6)HOW ——怎么做?如何提高效率?如何实施?方法是什么?
(7) HOW MUCH——多少?做到什么程度?数量如何?质量水平如何?费用产出如何?

检查原产品的合理性

步骤(1)做什么(What)?
条件是什么?哪一部分工作要做?目的是什么?重点是什么?与什么有关系?功能是什么?规范是什么?工作对象是什么?

步骤(2) 怎样(How)?
怎样做省力?怎样做最快?怎样做效率最高?怎样改进?怎样得到?
怎样避免失败?怎样求发展?怎样增加销路?怎样达到效率?怎样才能使产品更加美观大方?怎样使产品用起来方便?

步骤(3)为什么(why)?
为什么采用这个技术参数?为什么不能有响声?为什么停用?为什么变成红色:为什么要做成这个形状?为什么采用机器代替人力?为什么产品的制造要经过这么多环节?为什么非做不可?

步骤(4)何时(when)?
何时要完成?何时安装?何时销售?何时是最佳营业时间?何时工作人员容易疲劳?何时产量最高?何时完成最为时宜?需要几天才算合理?

步骤(5)何地(where)?
何地最适宜某物生长?何处生产最经济?从何处买?还有什么地方可以作销售点?安装在什么地方最合适?何地有资源?

步骤(6) 谁(who)?
谁来办最方便?谁会生产?谁可以办?谁是顾客?谁被忽略了?谁是决策人?谁会受益?

步骤(7)多少(How much)?
功能指标达到多少?销售多少?成本多少?输出功率多少?效率多高?尺寸多少?重量多少?
  收起阅读 »

原创 | 不谈SPC的Cp、Cpk都是耍流氓!

兑现承诺。 76261 这个拿以前的资料整理的,完成速度比较快。 准确的说:计算Cpk还有第四个条件: 过程稳态 ;...
兑现承诺。
不谈SPC的过程能力都是耍流氓.jpg

这个拿以前的资料整理的,完成速度比较快。
准确的说:计算Cpk还有第四个条件:过程稳态;这里在原文稍微点了下,没有强调。
 
下一篇《当Cp、Cpk遭遇单边公差?》,由于琐事缠身,更新时间不定。
 
Sol_Sun
2019/10/28 收起阅读 »

原创 | 从变差谈Cp、Cpk和Pp、Ppk

76245   致敬 杨格_Alan 老师,下一篇《不谈SPC的Cpk都是耍流氓》。   申明下:由于Cpk,Ppk在美系和德...
从变差谈Cpk_PPk.jpg

 
致敬 杨格_Alan 老师,下一篇《不谈SPC的Cpk都是耍流氓》。
 
申明下:由于Cpk,Ppk在美系和德系标准中含义不完全一样。本文及以下全都是沿用美系标准通用的概念。

Sol_Sun
2019/10-23 收起阅读 »

大家都来晒晒UID,看看有没有比我还早的。

76115 最近被几个帖子勾起了对以前6SQ盛况的怀念。 本人应当算得上老同志了,不过一直都是有一搭没一搭的在这里写点东西。...

00e25200d2311bfe208b59620c5a76d.png

最近被几个帖子勾起了对以前6SQ盛况的怀念。
本人应当算得上老同志了,不过一直都是有一搭没一搭的在这里写点东西。
 
大家可以晒晒各自的UID,看看还有没有比我还早注册的!

大数据时代下的质量管理与六西格玛

不管你承不承认,愿不愿意,大数据时代都将到来; 作为一名质量人,我们应当做好准备拥抱它的到来,而不是被它的到来带来的改变而抛弃。 下面请放开你的思想,畅所欲言:...
不管你承不承认,愿不愿意,大数据时代都将到来;
作为一名质量人,我们应当做好准备拥抱它的到来,而不是被它的到来带来的改变而抛弃。
下面请放开你的思想,畅所欲言:
1,大数据时代的到来会给质量管理带来什么变化?
2,大数据时代与六西格玛会擦除什么样的火花?
3,。。。。。。 收起阅读 »

用田口直积表理解稳健性设计 向DOE初学者进言(5)

BOX《试验应用统计》P338,清洁剂稳定性设计案例:4可控因子:2水平8次部分因析设计,3噪声因子:2水平4次部分因析设计,共32次不重复试验。原文称为裂...


BOX《试验应用统计》P338,清洁剂稳定性设计案例:4可控因子:2水平8次部分因析设计,3噪声因子:2水平4次部分因析设计,共32次不重复试验。原文称为裂区设计,这是典型田口直积表法。直积表也被称为乘积表,笔者认为乘积表更直观易理解。
但直积表常被人批评试验次数太多,直积表本质是每一个可控因子组合必需受过噪声因子组合的上下极限恶劣状态“压力”测试,其响应才是稳健的非实验室的数据。
有学者认为直积表可简化为一表法,即此案例成2水平7因子设计,这对稳健性设计是一种误解。
比如有一个2可控因子1噪声因子案例,一表法用2水平3因子因析设计8次试验,但每个可控因子组合只和上限噪声或和下限噪声各做4次试验。每个可控因子组合必须上下限噪声都做试验,即要再做8次,共16次试验。这样每一组可控因子组合在噪声上下限干扰下的均值和极差或样本方差是稳健性的指标。
而如有些学者用重复6次的样本方差作为离散性指标,但不是稳健性指标。而且重复多次试验总次数不比不重复的直积表少。
上述清洁剂案例旳噪声组合是省略的方法,忽略了部分噪声因子之间的交互效应。理想的噪声组合外表应用2水平3因子因析设计的8次试验,即需64次试验。
而传统D0E重视可控因子因析设计,而田口不少案例是噪声因子因析设计!?这就是稳健性设计的核心:可控因子可控,噪声因子不可控,只有通过试验才能知道噪声对响应的影响程度和可控因子和交互效应抑制噪声的效果。
  收起阅读 »

自变量相关(共线性)问题 向DOE初学者进言(4)

当方便用软件处理DOE数据建数模后, “我们往往可以非常自信地谈论总体估计的精确度。但是,我们对回归结果的信任程度取决于是否能够成功地处理以下常见问题:多元共...

当方便用软件处理DOE数据建数模后,
“我们往往可以非常自信地谈论总体估计的精确度。但是,我们对回归结果的信任程度取决于是否能够成功地处理以下常见问题:多元共线性、奇异值、非正态、异方差性以及非线性。”
单单就共线性问题,对寻找最优水平组合,也会带来判断困难。
《实用优选法》第3章望小型案例:A升温速度、B恒温温度、C恒温时间、D降温方式。
用极差法分析,对响应贡献大小排列:A>C>B>D。用部分正交试验:L9,3水平4因子。
9个结果中,C时间高水平6h组合,响应为1。
第2次正交试验之前,书中用“中心炮”和“两极炮”分析,都指向C时间8h和10h可能是最佳水平。但实际上第2次试验证明C时间3h或5h都能得到响应0。
原分析方向有误,笔者认为除部分正交试验信息不完备外,最重要的是A升温速度和C时间负相关,B恒温温度和C时间也负相关。
简易之:自变量之间相关不独立,有多种组合可达到最优(此案例响应为0)。
最后从经济角度,选C恒温时间3h的组合。
有的学者认为破解自变量相关的方法是去除一个自变量。
“一个常见的但往往容易被误用的解决共线性的方法是变量选择…用来将模型中回归因子减少至较低相关性的组合。”即逐步回归的方法, 但此案例,A和B都不能少。
统计假设最多的正态独立同分布,实际独立同分布是最基础性的约束。
也就是如不独立,不能用普通最小二乘法建数学模型,“对共线性的处理没有速效方法”。
比如SpC休哈特控制图,其中隐含前后工序独立,如不独立需用张公绪提出的SpD统计过程控制(选控图)。
多因子案例交互作用难避免,同样自变量之间相关也难避免。
所以高斯-马尔科夫七项假设中要求自变量之间没有完全的线性关系。
回归分析“尽管它是一件最常用的工具,但它同样有可能最容易被滥用的工具”
(《理解回归假设》序)
收起阅读 »

属非参数统计的部分正交试验 向DOE初学者进言(3)

属参数统计范畴的全因子析因设计,费歇在上世纪廿年代在农业DOE上已应用,但在工业上应用滞缓。原因是大于4因子工业案例众多,用全因子析因设计试验次数太多。而能大...

属参数统计范畴的全因子析因设计,费歇在上世纪廿年代在农业DOE上已应用,但在工业上应用滞缓。原因是大于4因子工业案例众多,用全因子析因设计试验次数太多。而能大大减少试验次数的部分正交试验,其所谓主效应混杂交互效应,建数模困难。所以面对工业多因子案例两难局面,欧美学者裹足不前。
到40年代后期,纺织业专家田口玄一忽略部分正交试验的混杂问题,摆脱了非零交互作用必须甪全因子析因设计的束缚, 把部分正交试验用于工业多因子案例,在日本获得巨大成效。但欧美学者称田口方法是 “看不懂的天书”。
后来田口先生亲自在美国大企业,解决不少技术难题后,美国权威DOE文献都把田口稳健性设计列入章节:成功的实践更雄辩。
历史上,国内学者以参数统计理论观点,认为重复试验6次也是小样本,2水平4因子用8次试验样本太小,对其推断的可信度也曾持怀疑态度。北大学者在北京印染厂,现场参与的2水平7因子部分正交试验案例,仅用8次试验,成品率从32%提高到42%,反应时间缩短了近5小时。
实践促使反思理论,北大张里千认为部分正交试验属未知总体的非参数统计系统。
 为了达到回归系数估计最小方差无偏估计,需适合高斯-马尔可夫7项假设;为了回归系数置信区间估计,还需正态分布假设…这都源于追求建回归方程的高目标。
依靠正交表的优良性,如仅以寻找最优水平组合,就可摆脱参数统计的约束。
张里千先生为田口方法找到了理论归属,也为各种非全因子析因设计各种DOE派别正了名。
并且说明正交表的均衝分散性、整齐可比性是小正交表用小样本产生高效能的关键:
如不删除惰性因子,网大易捕捉到冒尖区域;
因子水平间分散距离足够,系统性变异的信号能淹没随机性变异噪声;
每一水平参与试验次数相同,使每一组试验都有相同的统计解释力。
工业上百个参数案例不鲜见,用超饱和设计筛选、用各种非全因子析因设计是必要的,但非全因子析因设计信息不齐的软肋和追求建数学模型的高目标相悖的。
张里千先生为首的北大学者们提出中国特色的《实用优选法》:
用不设交互作用项的小正交表,依照序贯设计思想,用多轮正交试验逐步寻到可能最优组合。
也可同样用于控制,以达到设计要求的均值和方差为目的。
目前DOE学界两条发展方向:
(一)寻找最优水平组合,暂不建数模。作为应用数学,只要知道“是什么”,不必知道“为什么”。
(二)建回归方程为目的。
(1)一种思路是研究最小低阶混杂设计,需用经验因素判断,关键仍不能避免混杂。
(2)另一种思路,删减惰性因子,缩减到3、4因子后再用全因子析因设计建数模。
其缺陷是当试验设计水平不够多、不够广时,在原水平时可能是惰性因子,在原水平外可能是非惰性因子,尤其是非线性响应可控因子。
明明是高维空间模型,武断缩减成低维空间模型,缩减了信息后建立的回归方程,对样本拟合也近似了,离拟合总体更远了。
(3)全因子析因设计信息也不齐。
比如2水平2因子全因子析因设计有4次试验,其仅X1xX2考虑交互作用,但忽略了回归因子可能二次方。如全二阶模型需6个参数待估计,应6次试验。
用小样本估计总体的回归系数可信度有多高?
所以英国统计学家肯德尔指出“样本量n应是解释变量个数p的10倍。”(《应用回归分析》p10)
建回归方程的目的是用于预测或控制,对小样本拟合好的回归方程,不一定对总体拟合好!
所以有学者警示:
“一个模型如果对数据拟合得太好可能对预测是槽糕的。”(《试验设计与分析及参数优化》p13)
收起阅读 »

热门作者