您还没有绑定微信,更多功能请点击绑定

属非参数统计的部分正交试验 向DOE初学者进言(3)


属参数统计范畴的全因子析因设计,费歇在上世纪廿年代在农业DOE上已应用,但在工业上应用滞缓。原因是大于4因子工业案例众多,用全因子析因设计试验次数太多。而能大大减少试验次数的部分正交试验,其所谓主效应混杂交互效应,建数模困难。所以面对工业多因子案例两难局面,欧美学者裹足不前。
到40年代后期,纺织业专家田口玄一忽略部分正交试验的混杂问题,摆脱了非零交互作用必须甪全因子析因设计的束缚, 把部分正交试验用于工业多因子案例,在日本获得巨大成效。但欧美学者称田口方法是 “看不懂的天书”。
后来田口先生亲自在美国大企业,解决不少技术难题后,美国权威DOE文献都把田口稳健性设计列入章节:成功的实践更雄辩。
历史上,国内学者以参数统计理论观点,认为重复试验6次也是小样本,2水平4因子用8次试验样本太小,对其推断的可信度也曾持怀疑态度。北大学者在北京印染厂,现场参与的2水平7因子部分正交试验案例,仅用8次试验,成品率从32%提高到42%,反应时间缩短了近5小时。
实践促使反思理论,北大张里千认为部分正交试验属未知总体的非参数统计系统。
 为了达到回归系数估计最小方差无偏估计,需适合高斯-马尔可夫7项假设;为了回归系数置信区间估计,还需正态分布假设…这都源于追求建回归方程的高目标。
依靠正交表的优良性,如仅以寻找最优水平组合,就可摆脱参数统计的约束。
张里千先生为田口方法找到了理论归属,也为各种非全因子析因设计各种DOE派别正了名。
并且说明正交表的均衝分散性、整齐可比性是小正交表用小样本产生高效能的关键:
如不删除惰性因子,网大易捕捉到冒尖区域;
因子水平间分散距离足够,系统性变异的信号能淹没随机性变异噪声;
每一水平参与试验次数相同,使每一组试验都有相同的统计解释力。
工业上百个参数案例不鲜见,用超饱和设计筛选、用各种非全因子析因设计是必要的,但非全因子析因设计信息不齐的软肋和追求建数学模型的高目标相悖的。
张里千先生为首的北大学者们提出中国特色的《实用优选法》:
用不设交互作用项的小正交表,依照序贯设计思想,用多轮正交试验逐步寻到可能最优组合。
也可同样用于控制,以达到设计要求的均值和方差为目的。
目前DOE学界两条发展方向:
(一)寻找最优水平组合,暂不建数模。作为应用数学,只要知道“是什么”,不必知道“为什么”。
(二)建回归方程为目的。
(1)一种思路是研究最小低阶混杂设计,需用经验因素判断,关键仍不能避免混杂。
(2)另一种思路,删减惰性因子,缩减到3、4因子后再用全因子析因设计建数模。
其缺陷是当试验设计水平不够多、不够广时,在原水平时可能是惰性因子,在原水平外可能是非惰性因子,尤其是非线性响应可控因子。
明明是高维空间模型,武断缩减成低维空间模型,缩减了信息后建立的回归方程,对样本拟合也近似了,离拟合总体更远了。
(3)全因子析因设计信息也不齐。
比如2水平2因子全因子析因设计有4次试验,其仅X1xX2考虑交互作用,但忽略了回归因子可能二次方。如全二阶模型需6个参数待估计,应6次试验。
用小样本估计总体的回归系数可信度有多高?
所以英国统计学家肯德尔指出“样本量n应是解释变量个数p的10倍。”(《应用回归分析》p10)
建回归方程的目的是用于预测或控制,对小样本拟合好的回归方程,不一定对总体拟合好!
所以有学者警示:
“一个模型如果对数据拟合得太好可能对预测是槽糕的。”(《试验设计与分析及参数优化》p13)

0 个评论

游客无法查看评论和回复, 请先登录注册