重视图表分析,避过分依赖软件 -向DOE初学者进言(1)

DOE已进入使用软件阶段,因方便常为初学者首选。 DOE只有全因子析因设计才能精确量化交互作用,但大于4因子试验次数太多,使用受碍。 而大大减少试验次数的非...


DOE已进入使用软件阶段,因方便常为初学者首选。
DOE只有全因子析因设计才能精确量化交互作用,但大于4因子试验次数太多,使用受碍。
而大大减少试验次数的非全因子析因设计“混杂”不能避免,所以聪明的应用软件也不能百分之百可靠。
比如《实验设计应用指南》(闵亚能)p181例6_10,软件显示结果只有AxD互效应是显著的,而实际应BxC交互效应显著,而AxD交互效应不存在!原因是用了部分析因设计混杂了,经验丰富者“还可以‘猜’一下”,初学者可能成陷阱。
有的学者对多因子案例处理的方法:删除不显著因子或交互作用,缩减至3因子后再析因设计。
这方法也有误区,由于水平取值不够多,在2水平范围中因子可能是不显著性,在2水平之外水平可能是显著性的,(比如响应呈三次函数关系用4水平才能表达其复杂变异性)更有多因子案例,原不显著性因子高阶交互作用呈显著性。比如治爱滋病的鸡尾酒疗法,单个药疗都不显著,多种药混合使用有显著性疗效。
《实验设计与分析6版》蒙哥马利p194案例,其“主”效应图表面看来A+C+D+为最优组合,但从交互作用图显示应A+C-D+最优水平组合,实际证明后者是正确的。
非全因子析因设计中多因子案例中有交互作用的因子,所谓“主”效应实际是正交表的“列”效应,其中混杂了交互效应。所以前述例6_10,如用交互作用图分析即可避免用软件的失误。
正交试验的特点之一,整齐可比性,在交互效应加入后也不一定成立。
所以蒙哥马利认为:“统计方法优点,简单图解法起重要作用。”
“简单方法几乎总是最好的。”比如目测散点图,分辨回归曲线是线性还是非线性应是判断回归数模的第一步。
看来交互作用是DOE最大难点?但是田口方法反而专注于怎样利用正能量的交互作用,这正是稳健性设计全新的思维方法的妙处。(另文再述)

收起阅读 »

关于DOE分析结果中的失拟与弯曲

在论坛上看到关于DOE分析结果中有关“失拟”时隐时现的疑问,发个帖子供大家参考。   欢迎指教和探讨:-)   72831 ...
在论坛上看到关于DOE分析结果中有关“失拟”时隐时现的疑问,发个帖子供大家参考。
 
欢迎指教和探讨:-)
 
1.png


2.png



1.png



2.png


无标题.png

  收起阅读 »

如何在试验开始前比较所采用的的实验设计的效率

74238 DOE实验设计是重要的改善工具,也是统计学应用于解决实际问题的一门学科。虽然历经近百年的发展,至今仍是最为活跃的...

1.png

DOE实验设计是重要的改善工具,也是统计学应用于解决实际问题的一门学科。虽然历经近百年的发展,至今仍是最为活跃的统计学分支。它的活力主要来自于解决实际问题的有效性。
 
作为工程技术人员,不仅仅是质量工作者,尤其是研发和工艺工程师,经常要进行“试验”,比如:确定公差、选择产品结构、确定工艺参数、调整加工和制造参数等等。有时候,这样的事情多到我们不认为它们是“试验”,而是日常工作的一部分。
 
有经验的工程师会有体会:试验是耗力费时的,更麻烦的是,尽管不断调整和优化过程,有的问题还是反复发生。
 
记得有句话:“不会科学安排试验的工程师,最多只能算半个工程师”。
 
尤其在精益理念盛行的今天,看得见的浪费容易被消除或减少;但,如果不能科学的安排试验,尽管反复试验,其中的浪费确不太容易引起重视。使用科学的方法来安排试验,应该是精益思想的体现吧。
 
还有许多年轻有为的质量工作者在不断学习诸如六西格玛,同时也不断解决所谓的质量问题,也需要掌握DOE的基本技术。特别是黑带项目或者从事黑带工作,熟练运用DOE应该是基本功之一。
 
试验耗力费时,选择实验设计的类型也是很有讲究的:即使同一大类的设计中,不同的设计的“效率”也是不一样的。怎么能采用最少的试验次数获得更多更可靠的信息非常重要。
 

1.png


2.png



  收起阅读 »

六西格玛培训必掌握的专业术语汇总

ANOVA(ANalysis Of Variance) : 变异数分析。一比较两个或以上的群体之间平均值的差异程度, 作为相关性辨别的方法。  [...
ANOVA(ANalysis Of Variance) :变异数分析。一比较两个或以上的群体之间平均值的差异程度, 作为相关性辨别的方法。 

Balanced Design :设计在每组试验中有相同的实验单位。 

BB(Black Belt) :黑带。 

Black Belt Certification :黑带认证。完成两个符合条件的项目后取得的认证。 

Block :一群具有同构型的实验单位。 

Blocking :一个试验在既定的顺序或条件下完成。任何有妨碍的因子并不会影响真正的结果或重要性。 

Capability :能力,达成目标的过程中能维持下去的能力。 

Cause & Effect Diagrams :因果关系图。能表达出一个结果及可能的原因两者关系的图表。 

Center Points :以所有因子的最高及最低点的中点值来执行的实验。只能用在计量的数据。 

CI(Confidence Interval) :信赖区间。响应的数值能真实代表母体,使人信赖的百分比程度。 

Confounded Effects :不能被独立预测出的令人困惑的结果。 

Confounding :一个或多个结果,无法明确的归因于某个因素或相互间的影响。 

Control Chart :控制图。用来辨识一个控制下的操作过程的方法(在既定的统计范畴内)。 

Cp(Process Capability) :衡量过程能力的指数 Cp = 公差(Tolerance) / 6s。  

Cpk  : Performance Capability Index – Cpk = (USL – mean)或(mean - LSL)的最小值除以3s。 

CRD (Completely Randomized Design) :完全随机设计。在各种程度下,研究某个重要的因子,而实验以完全随机的顺序来执行,使不可控制的变因最小化。 

CTQ Flow down :以非常严谨的方法分配需求,并评估比关键性的产品及其部门的能力。

CTQ(Critical To Quality) :关键品质参数。 

Defect :一个用来衡量既定标准的参数,却无法符合其标准。 

Defective (Part) :某个被用来衡量既定标准的部分,无法符合该标准的任何条件。单一的缺陷部分可能包含数个缺陷(defects)。 

Degrees of Freedom :自由度,分析变异数的一个数值。相当一个独立于用来预测变量的信息个数。 

Degrees of Freedom for Error :一个数值,用来分析变异数以预测过程中的干扰度。未对过程的干扰度加以预测,而决定何者是重要的变量及其影响程度,都是无效的。一个大约的衡量准则是,5的误差的自由度为极小值,相当于至少六次的重复。 

DOA(Dead on Arrival) :客户接收时无法运作的产品。 

DOE(Design of Experiments) :实验设计; 一群母体中的任何一项用来了解高度分配的因子。通常和因子设计有关。 

DPMO(Defects Per Million Opportunities) :发现的缺陷个数除以(单位数乘每单位的机率),乘以一百万。 

DPPM(Defective Parts Per Million) :外部的阐述, ─缺陷单位个数除以总单位数,乘以一百万。在Cpk的基础下。 

DPU(Defects Per Unit) :发现的缺陷个数除以实际衡量的单位数。 

Duncan’s Method :邓肯法。一种统计方法,用以决定改变结果的因素其程度。 

Effect :当一个因素的水准由低变为高时,对结果产生的平均变化。 

Error :误差。过程中的固有变量。当其它变量保持不变时,结果产生的差异。(见noise)。 

Estimate :在既定的水准及考量过程中所有因素的影响下,对某结果的预测。(见prediction)。 

EVOP(EVolutionay OPeration) :渐进式操作。持续进行所设计的试验而不影响其效率的一种方式。 

EWMA(Exponentially Weighted Moving Average) :指数加权移动平均。一个控制曲线法,利用历史数据的指数加权值最小值。 

Experimental Region :实验范围。所有可能的因素组合产生可能的实验。亦称做“要素空间”(Factor Space)。 

Experimental Unit :实验中被发现及用来衡量的单位。亦称做“分析单位”(unit of analysis)。

F Test :一项统计检定,用来决定两变量间是否有差异存在。  

Factor :在实验中能改变的投入要素, 因子。可能以质(例如:附加的种类)或 量(例如:温度、气压)表示。 

Factor, Fixed :如果要素的水准明确的被指定,则此要素称做固定的。结论只能以 此要素来推论。结果具重要性。  

Factor, Monitored :一项因素(通常是不可控制的,因此不能视为固定的。)在实 验过程中发现,且与部分无法解释的变异相关联。   

Factor, Nuisance :妨害的因子。一项已知会在过程中制造差异的因素﹔并无要求 调查这项因子,但亦不可使此因子影响其它重要变因产生的结果。(见blocking)。 

Factor, Random :如果要素的水准是随机自母体值中选取时,则此因子称做“随机 的”。变异的组成要素具重要性。 

Fixed Effects Factor :有选择地挑选出某水准下的因子。例如,以400度、450度、 500度来做为研究气温的结果。(与做Random Effects Factor比较。)

Fractional 2k Designs :所有的要素都在低水准及高水平下做测试。

Fractional 3k Designs :所有的要素都在三种水准下测试:低、中、高。 

Fractional Factorial Experiment :部分因子试验。DOE的集合,只部分探究数个 变量中的两种水准。用来遮蔽住许多琐碎的变量,而集中焦点于主要控制过程的少而重要的变量。  

Full Factorial Experiment :全部因子试验。DOE的集体,探究数个变量中的两种 水准,并可取得对主要及相互影响的结果之了解。  

Gage R&R(Gage Repeatability and Reproducibility) :某分配的所有变异百分比 的分析,此分配可归因于衡量系统中的变异。  

Gage Repeatability :当操纵者利用相同的gage衡量此明显的特性时,可得到相同 的变异。  

Gage Reproducibility :当衡量相同部分的特性时,由不同的操作者以相同的gage 衡量其平均变异。 

Generator :一个用来创造部分因子设计的相互影响作用。 

GLM(General Linear Model) :一个ANOVA的形式,可允许实验设计中些许程 度的不平衡。

HALT─Highly Accelerated Life Testing :为达可靠的设计所用的数种方法中的一种。其概念为测试某产品致其极端(失败)条件,找出失败的根本原因,改善设计,并重复程序。 

Histogramv :长条图。表示所搜集资料分布情形的条状图。 

Hypothesis :前提,假说。一项利用统计方法来测试的声明。此假设可能被拒绝,或因无够充分的证据而被拒绝。 

Interaction :在某情况下,一项因子对某结果影响的水准不同于第二项因子的不同水准。有双向相互影响,三向相互影响等。 

IX-MR :Individual X and Moving Range─一个有连续数据点的控制曲线,并有点之间的等级图表。 

Kutosis :峰度。是描述某变量所有取值分布形态陡缓程度的统计量。峰度为0表示其数据分布与正态分布的陡缓程度相同;大于0表示比正态分布高峰更加陡峭,为尖顶峰。 

Level :某因子的数值或设定。可以是质(如:附加A和附加B)或量(如:1000磅平方英吋,2000平方英吋)。 

LSD(Latin Square Design) :一种实验设计,研究其中的一项重要变因,并排除两项干扰因素。 

Main Effect :当一项因子由低水准改变至高水准时,其对结果的改变。 

MBB(Master Black Belt) :6σ的训练师和顾问师。  

Mean :衡量一项变数的中间趋势。原点的第一项要素。 

Mean Square :在ANOVA表中的某栏,代表由不同来源的变因导致结果的差异。  

Mean Square Error :在ANOVA表中的某项,代表所有因子在给定的水准下,结果所产生的差异。预测由于干扰(误差)对结果产生的差异。 

Minitab :目前许多人所选择的统计分析应用软件。 

Multiple Comparison Procedure :一种用来决定因子在何种水准下导致结果改变的统计方法。例如:Fisher法、Duncan法、Scheffe法。 

Multi-Vari Analysis :一种图解法,将过程中的变化来源拆解为他们基本的组成成分。这种技巧用于初步移除多而琐碎的因子,并准备替代的因子作为设计的实验。 

Multivariate Statistical Methods :统计工具,用来分析一组变量以决定他们对数种结果的影响。包括一组多样的统计工具,例如回归、成分法则、因子分析、群组、分别分析。 

Nested Design :一项实验设计,其中一种因子因其它变量而设定多种水准。例如:不同厂商提供不同批次。附加物的不同水准等。 

Noise :一过程中固有的变因。代表当不改变任何因素时,结果的改变。  

Normal Distribution :常态分配,一种钟状的机率曲线,描述许多自然的过程。当情况一再重复且平均发生时。 

Normal Probability Plot :一种图标法,用来研究样本是否来自一个常态分配的母体。通常用来检验利用ANOVA的正确性。 

One-Way ANOVA :分析单项因素在不同水准下所生的变异。(见ANOVA)。 

Optimization :从过程中找出最希望的结果下,其因子和水准的组合。

Pareto Chart :以一般公制单位(次数、元额、时间等)表示事件的条状图。

Plackett-Burman Design :一种设计的实验,用来筛选样本需要的最小量。通常只调查主要的影响,而不预测相互间的影响。  

Point Estimate :点估计值。判断某种预言或预定的响应的最好单一值,应该与信心和/ 或预言同时使用。    

Pre-control :预先控制。当流程开始时,建立统计上合理可能性的优势的一种方法。 

Prediction Interval :预言距离。反应值的信赖百分比范围就是未来观察值会落在的范围内。 

Prediction:预言。用于所有已知因素的一套标准的最佳评估响应。  

Process Demographics :人口统计数据流。产生响应的时候期间各种因素条件/ 状态的清单。这些帮助我们理解过程的范围也许可排除问题。  

Random Effects Factor : 随机影响因素。随意地从可定义母体选择层次的一个因素。 举例来说,从五批生产量中任意选择一批调查其影响 (固定影响因素的比较)。

Randomization :随机选择。实验这行中将次序混合完全实用。 

Randomized Block Design : 集区随机实验。调查兴趣的因素及一个令人讨厌的事物因素其相对阻塞的实验 。 

Repetition :再现性。在一个处理结合上执行几个实验单元。 与复制形成对比。  

Replication :重复性。反复的执行一些相同的实验情况;提供了制程中噪音的评估。 

Residuals :残余。在既定的因素情况下,观察的反应和预定的反应之间的差异 。用于模型证实和过程 的调查。 

Resolution :解答。部分因子设计的描述,提供因素间相互影响的程度。

Response :反应。实验期间量测过的制程输出。 

RSM(Response Surface Methodology) :反应曲面法。实验设计中一门检查和理解这些极少的曲率。子集包括中央合成设计在星星或者面上的点。 

R-Square :判定系数。在反应中变异百分比由控制的因素来解释。   

Run :一套过程条件由规定实验方面所有因素的层次定义。同样, 叫作处理结合。 

Run chart :经营图表。提供一些统计分析能力和机率资料的连续时间序列图。

Scatter Plot :散布图表。显示两个变异数间关系的图表(dot plot)。 

SCN(Supplier Change Notice) : 供货商变革通知。要求改变一个购买部分的讯息装置,由供货商对企业开始, 或是企业对供货商开始。 

Screening Experiment :筛选实验。用来描述一过程的技术 (通常为因素标准的变化呈现反应中的线性变化) (与 RSM作比较).  

Sigma :标准差。使用具有一套变异数数据的统计计算。其值为变异数的平方根。 

Signal to Noise Ratio :讯号噪声比。当因素标准中没有变化时,由于改变与可变性相关的因素标准取决于反应中的可变性的一个比例 。 

Skewness :偏度。描述某变量取值分布对称性的统计量,能够影响使用ANOVA的有效性。偏度为0表示其数据分布形态与正态分布偏度相同;大于0表示为正偏或右偏,即有一条长尾巴拖在右边。 

SPC(Statistical Process Control) :统计流程管理。对希望的状态在修正以后,使用安定性最好的监控流程。

Trivial Many :锁碎多数。长期被认为在流程上会有影响的因素,但实际上说明了成果上很少的差异。 

T-Test  :正常的母体下,样本平均数的统计比较 。 

Two-Way ANOVA :双因子变异数分析。为以若干标准调查两个原素的变异数分析。

Two-way Interaction Plot:双因子互动图。一个因素的平均数反应的散布图 (纵轴)就像一个因素(横轴)和第二个因素的每一个标准的平均反应由线所连接出来。  

Type I Error :没事却误判为有事的错误。 其组合机率称为 a。 

Type II Error :确实不同,却误判为相同。其组合机率称为 b。

UCL or LCL  :管制的上、下限 – 管制图表的统计范围。 

Unbalanced Design :不平衡设计。每一个处理结合中实验单元不相等的数字的设计或执行。  

USL or LSL :规格的上、下限– 设计标准的界限。 

Variance:变异。提供一个量测散布的方法。其平方根为标准差,The 2nd moment around the mean。  

Vital Few  :关键多数。是管理流程中的关键因素。 

ZB(Z benchmark) :认为流程是短期变异数的中心(在目标方面)。
 
来源:文章转载自张驰咨询 收起阅读 »

DOE试验设计所涉及的命令

DOE试验设计所涉及的命令:        通过试验设计方法可以对过程进行改善。可以通过试验设计筛选出对过程变异存在重要影响的因素,MINITAB可以分析这些...
DOE试验设计所涉及的命令:

       通过试验设计方法可以对过程进行改善。可以通过试验设计筛选出对过程变异存在重要影响的因素,MINITAB可以分析这些因素及其交互作用对过程的影向状况, 可以通过分析发现这些因素的最优水平设置从而优化过程性能。MINITAB的试验设计分析渉及以下命令:


1. Factorial

(1) Create Factorial Design:  生成二水平全因子、分部因子和 “Plackett-Burman”设计表。

(2) Define Custom Factorial Design:  从已经输入到工作表中的数提创建一个因子试验设计方案。

(3) Analyze Factorial Design:分析二水平全因子和分部因子设计以及“Plackett-Burman”设计。

(4) Factorial Plots: 显示二水平全因子、分部因子和 “Plackett-Burman”试验设计的主要影响图、交互作用影响图和三维图。

(5)Contour Surface/Wireframe Plots: 画出轮廓图和三维图响应表面图。   
                                                              
(6) Response Optimizer:  计算优化的解决方案并画出交互影响图以确定一组同时优化所有响应变量的因子水平。

(7) Overlaid Contour Plot:为多个响应变量画出轮廓图。 

 
2. Response Sarface

(1)Create Response Surface Design:  生成  “Box-Be-hnken”和中心复合试验设计表。

(2) Define Custom Response Surface Design:从已经输入到工作表中的数据创建一个响应表面设计方案。
 
(3) Select optimal Design:  选择一个设计点的子集,  增加一个设计或评估一个设计。

(4) Analyze Response Surface Design:  分析响应表面设计。

(5)RS Plots:  画出一个轮廓图或三维响应表面图。

(6) Response Optimizer:计算优化的解決方案并画出交互影响图以确定一组同时优化所有响应变量的因子水平。

(7) Overlaid Contour Plot:  为多个响应变量画出轮廓图,


3.Mixture

(1)Create Mixture Design:  生成混合水平试验设计表

(2) Define Custom Mixture Design:  从已经输入到工作表中的数据创建一个混合水平设计方案

(3) Select optimal Design: 选择一个设计点的子集, 增加一个设计或评估一个设计

(4) Analyze Mixture Design:  分析混合水平试验设计

(5)Overlaid Contour Plot: 为多个响应变量画出轮廊图


4. Taguchi

(1) Create Taguchi Design:  生成田口正交试验设计表

(2) Define Custom Taguchi Design:  从已经输入到工作表中的数据创建一个田口试验设计方案

(3) Analyze Taguchi Design:  分析田口试验设计

(4)  Predict Taguchi Results: 预测田口试验设计结果


5.DOE

(1)Modify Design:改变因子名和水平

(2)Display Design:改变试验顺序并为工作表中的因子编码。

  收起阅读 »

分享六西格玛培训中控制阶段的的主要任务、流程步骤

一、 六西格玛 控制阶段的的主要任务是: 1、制定和向流程拥有者移交流程改...
一、六西格玛控制阶段的的主要任务是:

1、制定和向流程拥有者移交流程改善的控制计划,使其有能力和方法持续控制和检查流程改善,具体包括:
•确认未完结的项目内容、责任人和完成时间;
•明确改善后的具体流程控制方法、责任人和异常出现时的措施;
•1年内定期确认改善效果并提供监督/报告流程的改善保持状况。
 
2、项目团队成员继续收集所关注关键参数Y, Xs的数据,运用SPC等工具监控项目所做改善的保持状况。
 
3、通过各种手段、工具确认控制计划并完成实时控制,保证改善的项目结果一直得到保持。
 
4、运用控制图和防错设计来监测和控制流程变异:
.控制图的预警机制可用于保持流程改善的稳定性,在SPC控制图给出异常信号时,就要采取措施来修正流程参数。
.在条件许可的情况下,应尽量采用防错设计保证流程不会产生变异。
 
5、发现、找出该项目中可供学习借鉴的地方,推广到企业内部其他类似的问题上,使改善效果不断扩大。
 
6、将跟踪完毕后的项目报告纳入企业的六西格玛管理数据库,供企业其他的项目团队参考。
 
二、控制阶段的流程步骤

控制的主要工作流程是跟踪评价改进效果并进行验证,同时制定且必须文档化控制措施。
 
在项目的实施过程中,将改进措施落实到流程中,在此过程中,首先要收集Y的数据,确认改善后的效果,然后还应评价改善后的流程能力;将改进措施纳入设计图纸、工艺文件或技术规范中,使其文档化、标准化和制度化;将改进结果应用到类似项目中。这一阶段的工作包括:
 
1、重新进行测量系统分析
特别对关键输入因素X应用测量系统分析技术,确定它的测量系统的波动情况是否满足产品系统的测试需求,或再相应调整X的取值范围,另外还需进行y的测量系统分析,因为改进后,流程的波动变小,流程趋于稳定,原有的测量系统已不能区分流程波动,所以需要重新进行Y的测量系统分析。
 
2、重新评价所关注流程的流程能力
必要时建立控制图,对流程特性应用SPC技术进行实时控制,识别流程性能中出现的特殊原因波动,实施减小波动的措施,重新计算流程能力并保持改进成果。
 
3、制定和严格执行流程控制计划
将流程改善或流程改进的更改进行文档化,制定严格的流程控制计划,并纳入企业质量管理体系中。
 
每一个六西格玛管理项目的成果首先要制度化、文档化,以确保项目成果得到不断延续、没有弱化。然后需要定期监控、测量,确保改进效果,这样需要持续一年。为了保证六西格玛管理的可信度和权威,所以,企业需要建立有关改善类项目实施情况的评价与检查制度,定期评审改进项目的进展情况,提出下一阶段的工作重点和方向。
 
文章摘自:张驰咨询
  收起阅读 »

田口方法漫谈(二三)

主动型动态参数设计望目型选优探讨。 田口方法动态参数设计仅分主动型和被动型,笔者认为应分离出望目型,不用其信噪比,建议用更简单计算方法。 田口方法用一元线性回归...
主动型动态参数设计望目型选优探讨。
田口方法动态参数设计仅分主动型和被动型,笔者认为应分离出望目型,不用其信噪比,建议用更简单计算方法。
田口方法用一元线性回归模型作为动态参数设计的模型,表面上是创新,实际DOE的量化数据都可用回归方程建模。
其信噪比公式:
η=10Lg(β2/σ2 ),(《试验设计》茆诗松p250)
由于β在线性回归方程中是回归系数,所以β越大越吻合线性。但在物理模型中,田口观点β要合适,不是越大越好,但β被解释为效率,更容易陷入越大越好的误区。
静态望目型2种设计,如方差相等,一种均值大于目标值,另一种均值贴近目标值,用信噪比评价,前者会优于后者荒谬结论!?
动态信噪比也犯同样失误。
笔者不想追究田口先生数学推导过程是否合理,正如其静态参数设计望目型不含目标值m的低级失误一样,其动态望目型信噪比不含目标值,明显不合逻辑。其动态望目型,由于用线性回归方程为数学模型,本质是望“直线”,其直线假设也有问题,实际数学模型可能是非线性,所以“直线”并非真正人的意志的目标值。
所以最简单的方法先不假设是哪一种数学模型,就按田口的分布与目标值偏离即产生质量损失原则,即趋目性和离散性要小的两要素来设计计算方法。
比如经典的汽车转向系统选优,如驾驶员意志是希望车辆转20度角,是望目型。但汽车与摩托车不同,必须依赖转向系统作为中介表达目标值。转向系统可设计不同的减速比k来助力。
如果是5:1,设为k1,则方向盘需转100度角,(即信号因子M1),汽车理论动态目标值成K1M1=20度角,由于各种因子干扰,车辆实际转角响应y1总与目标值有差异。
计算式:Σ│KiMi-Yi│,或Σ(kiMi-yi)2,趋目性和离散性合为一式。
即在各不同车速,不同转向角大小时,与动态目标值总差异最小的K最优,就是对不同中介K(这里是减速比)选优。
信号因子和响应可能是非线性关系,信号因子至少4水平,即i>=4。
收起阅读 »

DOE(design of experiment)的步骤

DOE(design of experiment)的步骤 第一步 确认目标 我们通过控制图、故障分析、因果分析、失效分析、能力分析等工具的运用,或者是直接实际工...
DOE(design of experiment)的步骤
第一步 确认目标
我们通过控制图、故障分析、因果分析、失效分析、能力分析等工具的运用,或者是直接实际工作的反映,会得到一些关键点的问题点,它反映某个指标或参数不能满足我们的需求,但是针对这样的问题,我们可能运用一些简单的方法根本就无法解决,这时候我们可能就会想到实验设计。对于运用试验设计解决的问题,我们首先要定义好实验的目的,也就是解决一个什么样的问题,问题给我们带来了什么样的危害,是否有足够的理由支持试验设计方法的运作,我们知道设计必须花费较多的资源才能进行,而且对于生产型企业,试验设计的进行会打乱原有的生产稳定次序,所以确定实验目的和实验必要性是首要的任务。随着实验目标的确定,我们还必须定义试验的指标和接受的规格,这样我们的试验才有方向和检验试验成功的度量指标。这里的指标和规格是试验目的的延伸和具体化,也就是对问题解决的着眼点,指标的达成就能够意味着问题的解决。
第二部 剖析流程
关注流程,是我们应该具备的习惯,就像我们的很多企业做水平对比一样,经常会有一个误区,就是只将关注点放在利益点上,而忽略了对流程特色的对比,试验设计的展开同样必须建立在流程的深层剖析基础之上。任何一个问题的产生,都有它的原因,事物的好坏、参数的便宜、特性的欠缺等等都有这个特点,而诸多原因一般就存在于产生问题的流程当中。流程的定义非常的关键,过短的流程可能会抛弃掉显著的原因,过长的流程必将导致资源的浪费。我们有很多的方式来展开流程,但有一点必须做到,那就是尽可能详尽的列出可能的因素,详尽的因素来自于对每个步骤的详细分解,确认其输入和输出。其实对于流程的剖析和认识,就是改善人员了解问题的开始,因为并不是每个人都能掌握我们所关注的问题。这一步的输出,使我们的改善人员能够了解问题的可能因素在哪里,虽然不能确定哪个是重要的,但我们至少确定一个总的方向。
收起阅读 »