MSA GRR研究时的样本问题及解决策略

按照AIAG 《MSA参考手册》第四版中第95页中的要求,GRR(测量系统的重复性和再现性)研究时应当“取得一个能够代表过程变差实际或预期范围的样本”。我相信那...
按照AIAG 《MSA参考手册》第四版中第95页中的要求,GRR(测量系统的重复性和再现性)研究时应当“取得一个能够代表过程变差实际或预期范围的样本”。我相信那些参考过该手册做过MSA的朋友已经意识到了:这个要求,在新产品开发的阶段是难以满足的!我们先了解一下GRR的3个指标:

捕获1.PNG

 
其中,
捕获2.PNG


可见,%GRR对过程总变差的指标P/TV,以及对零件变差的指标ndc(分辨率)均会受到零件间变差σp的影响。因此,这就是为什么《MSA参考手册》规定用作评估样本的零件应能代表实际的过程变差或预期变差,这样评价出的测量系统,才能够适用于当前产品的测量。

然而,在新产品开发阶段,测量系统和制造过程是同步开发的,在测量系统的预验收阶段,是没有那么多的产品样本供我们测量的,也就是2-3个样品,甚至还不能满足GRR评估时最少的样本数量5个的要求(注:MSA参考手册中的要求得到至少45个测量值,以确保评估结果的置信度)。

到了测量系统的最终验收阶段,虽然可以满足GRR的样本量的要求,但是这个时候的样本之间的变差也是相当大的,因为过程还远未达到量产时的稳定状态和能力水平!而我们开发的测量系统,是为了用于量产以后的测量的,如果仅仅使用试生产时的产品作为样本来评价GRR,它的这两个指标即使满足了要求(P/TV<=10%,ndc>=5),在量产后,也很可能会因零件变差的减小而不再满足要求的!但是量产后,量具及测量工装已经定型和安装到位了,已经不能推倒重来了!

那么,如何才能避免这种尴尬和被动的局面呢?

在测量系统的预验收阶段,如果用于样本的零件数量不能满足5个的要求,我们就只能评估它的量具能力Cgk了。评价Cgk时,只使用一个样本进行重复测量就可以了。Cgk可以反应测量系统的重复性和偏倚误差,Cg反应测量系统重复性误差,以及在这两个方面满足产品公差要求的能力,如下图所示,

捕获3.PNG


等到了测量系统的最终验证阶段,我们可以使用量产后过程能力指数CP的目标值来导出过程总变差的目标值,使用这个目标值来评估测量系统是否满足预期的测量精度要求,即:

捕获4.PNG


这样,我们可以得到期望的过程总变差的目标值σc,在把试生产时的样品测量完成后,再将这个σc代入到GRR的上述两个指标的计算公式中,用它评价出来的测量系统的指标,就可以适用于量产后过程稳定时产品的测量。

这样,我们就可以成功地避免上面所讲的尴尬和被动的局面了。

但是,如果量产后实际的过程能力相当高,远高于过程能力指数CPK的目标值(如1.33),即过程总变差可能是很小,这样的话,P/TV和ndc的指标值就有可能不能满足要求了(<=10%和>=5)。那么我们还应当升级测量系统吗?升级测量系统,就意味着更换测量仪器,就需要更高的投资!

我在此的看法是:可以根据企业自己的情况来决定是否升级、如何升级。可以分为以下几种情况来考虑:

1、首先来判断指标P/TV和ndc不满足要求(如<=10%),真的是由于过程能力提高了,还是测量系统变差了。判断的方法是:使用GRR对公差的指标P/T,如果这个指标的值相比之前的评估没有增加,那么就说明测量系统没变,而是由于过程能力提高了。

2、如果本来用的就是精度很高的测量仪器,如CMM、OMM等,这样就基本不存在测量系统精度不满足过程能力提高的情况;

3、如果测量系统的指标不能满足实际过程能力的提高,且测量的数据不做统计分析如SPC控制图等,只用于检测产品合不合格,就可以暂时不用升级测量系统。

4、如果测量系统的指标不能满足实际过程能力的提高,但必须要做控制图来监控生产过程,那么就应当升级测量系统。如果不升级测量系统,其分辨率就不能满足控制图的要求,做出的控制图就会存在下面的问题:

捕获5.PNG


5、如果实际的过程能力达到了非常高的水平,如CPK=3.0,那么,如果要求测量系统来适应过程能力,就可能需要巨额的投入去采购高端的测量仪器,管理层不太可能批准的!这个时候,我们甚至连控制图也不做了!

但是,无论是上述哪种情形,我们必须坚守住过程能力目标值这个“底线”,以及在该目标值下对应的测量系统的精度水平。

如何去坚守这个”底线“呢?就是按照MSA的计划,定期抽取产品样本进行测量,使用过程变差的目标值(用CP的目标值推出来)来对测量系统进行评估,看看测量系统有没有变差。 收起阅读 »

做一份好FMEA,是方法重要?还是技术重要?

FMEA分析到底是方法论重要?还是产品/工艺技术重要?有人认为,FMEA的逻辑方法重要,不懂FMEA的数据关联关系,不掌握结构树、功能网、失效网,怎么能做出FM...
FMEA分析到底是方法论重要?还是产品/工艺技术重要?有人认为,FMEA的逻辑方法重要,不懂FMEA的数据关联关系,不掌握结构树、功能网、失效网,怎么能做出FMEA呢?但也有人认为产品和工艺技术重要,没有懂技术的人员参与,怎么能识别出产品与过程风险呢。

之所以会出现这样的争论,是没有搞清楚FMEA协调员与技术专家在FMEA活动中的工作职责。FMEA是一个团队的活动,不是一个人的活动。一份能通过审核的FMEA,在台面上没有问题,那是需要协调员来主导方法论的,但要使FMEA起到作用,要从符合性转变为有效性,要求承载工程师的经验和教训,当然由技术专家的主导就更为重要了。所以做一份审核没有问题的FMEA,方法论更重要,做一份起到作用的FMEA,技术更重要。再次说明的是,这里有一个字“更”,所以任何一份好的FMEA,都是团队共同协作的结果。

FMEA协调员是公司内部的方法论专家,精通FMEA的步骤、数据关联关系、评分准则、风险优化标准等。协调员不是技术专家,他不一定懂公司的所有技术和工艺,他是套路专家,他专注方法论。

他是FMEA的七步法方法论专家,但不可能独立完成FMEA。协调员不一定懂所有的产品和工艺技术,缺少完成的FMEA功力,他管理FMEA的七步法的方法论,对内部人员进行FMEA的七步法的培训,参与FMEA团队建设,协调FMEA工作组活动。如果真的只让协调员来独自完成FMEA,那最多达成符合FMEA手册、标准的要求,达不到风险识别与控制的真实目的。

而技术专家拥有精湛的产品与工艺技术,清晰地知道产品特性波动带来的失效模式及失效后果,但如果让技术专家来独自做FMEA,他会说,这些我都考虑过了,而且产品设计中加了什么硬件,采取了何种验证措施,还要把它写成文件完全是没必要的事。如果真要做,SOD如何评分都让我们的技术专家喝上好一壶了。

FMEA是一个团队的活,不要机械地认为,团队活动就是安排团队一起评审FMEA会议,单独讨论FMEA会议真的很无聊,且组织多功能协调比较麻烦,所以强烈建议DFMEA与产品研讨会一起开,PFMEA与工艺研讨会一起开,然后由专人负责做FMEA记录不就好了嘛。

具体来讲,就是由协调员负责组织会议,协调员根据新项目,找到公司类似产品的FMEA或基础FMEA,作为本次新项目的FMEA模板,由协调员负责提问,技术专家负责回答技术问题,然后由记录员做好记录,最后会议完成后,及时得更新整理FMEA。


FMEA目的

1.发现和评估产品/过程的潜在故障和结果;

2.确定与产品相关的过程的潜在失效模式;

3.评估失败对客户的潜在影响;

4.确定潜在设计或制造过程的失效原因,减少失效的发生或找出失效的过程控制变量;

5.编制潜在失效模式分类表,建立考虑措施的优化体系;

6.为了降低缺陷的严重性,必须改变零件的结构设计;

7.提高缺陷到达用户之前或产品出厂之前发现缺陷的概率。

最后,所有FMEA分析都需要FMEA分析表,这是FMEA分析结果的书面总结。因此,FMEA分析为设计部、生产计划部、生产部、质量保证部等相关技术部门提供了共享的信息资源。另一方面,FMEA为今后类似产品的设计提供了信息。

 实施问题

1.FMEA工作应与产品设计同步进行,尤其是在设计初期,这将有助于及时发现设计中的薄弱环节,并为安排改进措施的顺序提供依据。

2.对于不同阶段的产品开发,应进行不同程度和层次的FMEA。也就是说,FMEA要及时反映设计和流程的变化,并随着发展阶段不断补充、完善和迭代。

3.FMEA的工作应该由设计师来完成,应该贯彻“谁设计谁分析”的原则,因为设计师最了解自己设计的产品。

4.应加强FMEA分析的标准化,以确保FMEA分析结果的可比性。在开始分析复杂系统之前,应该统一制定FMEA的规范要求。结合系统特点,对FMEA的分析协议等级、失效准则、严重程度和危害程度的定义、分析表、失效率数据来源和分析报告要求进行统一规定和说明。

5.跟踪和分析FMEA的结果,以验证其正确性和改进措施的有效性。这个跟踪分析过程也是一个逐步积累FMEA工程经验的过程。一套完整的FMEA数据是各种经验和宝贵工程财富的总结,应不断积累,存档备查。

6.虽然FMEA是一种有效的分析方法,但它不是万能药,也不能代替其他可靠性分析工作。需要注意的是,FMEA一般是静态的单因素分析方法,在动态分析中并不完善。如果对系统进行综合分析,应结合其他分析方法。 收起阅读 »

如何让FMEA具备可操作性且更有价值?

上一篇文章分享了,为什么很多企业FMEA做不好,发挥的作用不大的?今天SunFMEA带着大家来了解,如何让FMEA具备可操作性且更有价值?此次分享从人员、时机这...
上一篇文章分享了,为什么很多企业FMEA做不好,发挥的作用不大的?今天SunFMEA带着大家来了解,如何让FMEA具备可操作性且更有价值?此次分享从人员、时机这两个方面详细介绍,改掉这些问题,让你制作FMEA的过程真正实现轻松。希望对大家有所帮助,欢迎交流。
一、人员
人是从事活动的主体,FMEA活动需要人去管理、实施、评价。这需要包括公司的管理层、FMEA团队、技术人才等等多类型、多部门的人员共同参与。管理者的支持决定了FMEA推行的深度,团队的合作左右着FMEA活动的完成情况,人员的能力决定着FMEA活动的质量。
1. 加强推行力
“领导作用”,是质量管理体系实施的一项基本原则。推行质量管理体系是一个公司级的行为,不是某一个人可以实现的。FMEA作为质量管理体系中一项重要的工具,同样需要遵循这个原则。
2. 有效监督 
FMEA活动的实施需要有效的监督,监督其时效性、准确性等。没有有效的监督,是很难在要求的时间内完成高质量的FMEA的。很多公司只是因为顾客要求而安排了这项任务,至于这项任务实施的目的、怎么实施、实施的效果等并未去太多的关心。以至于大多数企业的FMEA只是停留在形成文字,作为一份记录保存的阶段。 
3. 提高意识
前期的预防大于后期的控制。FMEA作为产品质量风险分析和风险评估的一种很好的工具,可以为我们的产品和过程在策划的时候识别出多数在产品和过程实现过程中可能产生的风险问题,以便采取有效的前期验证与过程防错措施。部分公司中高层管理者并未意识到这一点,而当产品生产之后出现各种各样的质量缺陷时,又开始焦虑于采取各种补救措施。当然,可能前期的预防会产生比较高短期成本,这也会是管理者不重视的原因。
3、组件团队 
FMEA是一个团队性活动。新版FMEA手册中也明确定义了FMEA活动所必须的团队成员。要完成一份FMEA,需要具备熟练的质量、技术、试验、FMEA知识等多学科的技能,显然这是一个人很难办到的。而现实中,很多公司的FMEA都是出自某一人之手,所以也必然起不到真正的作用。
4、协同合作
FMEA既然是一个团队活动,那么团队之间的协同作业就非常必要。FMEA活动需要集中团队的力量而进行,集思广益、统一认识,其过程中可能就某一描述经过多次的讨论才能确定下来。在与很多公司交流时发现,虽然公司组织了自己的FMEA团队,但实际FMEA活动中团队成员因为自己的工作或其他原因,很少参与到团队协作中,表现为FMEA讨论活动很少,或者对同一问题的描述出现多种说法的情况等。
5、增加FMEA知识缺积累
FMEA活动需要团队成员对FMEA知识有足够理解认知。一方面需要理解FMEA这个质量工具,另一方面需要掌握FMEA分析中需要用到的一些支持工具,如框图、故障树、P图等等。
6、提高专业技能
开展FMEA活动除了需要掌握FMEA知识外,FMEA中所涉及的专业技能也是必不可少的,包括产品技术、工艺工程、法律法规、行业规范、商务成本、质量管理等等。比如在进行DFMEA时,为产品定义其功能,如果你对产品的质量属性、功能要求,顾客的要求,制造装配要求,法律法规的要求等不熟悉,在进行分析时就很容易漏掉分析要素,相应的就会漏掉失效,存在未识别的风险因素,FMEA的分析也就不能尽量的完整。而往往漏掉的分析要素可能就会是后期产品生产中产生质量缺陷、顾客抱怨的原因。
二、时机
FMEA的时机对完成一份高质量的FMEA至关重要。任务开始的时间,导入和更新的时机以及完成的周期要求,这些都直接影响着我们FMEA最终的输出质量。
1、开始时间
 FMEA旨在成为“事前”行为,而不是“事后”行为。FMEA的目的是识别、评估并最终降低潜在风险。既然是潜在的风险,那就必须是在产品和过程实施之前,风险潜在存在的状态下进行的,否则FMEA就失去了它存在的意义。 
现实中,部分企业的FMEA可能是在产品和过程已经策划完成,甚至是在产品和过程已经实现了之后才开始。这样做出来的FMEA只是将现有的、已经形成的方案一条条搬到纸上而已,几乎不存在分析的过程。这样形成的FMEA必然也起不到作用,而且在产品和过程实施后还可能会因过多的未识别风险而发生大量的增补和修改。
2、导入和更新时机
FMEA是一个动态的活动,也就是说FMEA不是一成不变的,它是适时更新的。但事实中,有些公司你五年前去看的是这样的,而五年后去看的还是这样的,可能唯一的变化就是表头的变化。当然也不能否定某些公司的产品和过程策划的好,产品生命周期内从来没有发生过任何的更改或质量问题,但这种概率几乎是不存在的。 
3、掌握FMEA手册中给出了三种时机:
① 新设计,新技术或新过程;
② 现有设计或过程的新应用;
③ 修改现有的设计或过程。大多数企业,对有新设计、新应用或者新质量问题等发生时产生的被动FMEA要求一般执行的比较好,而对持续改进如QCC活动时产生的主动FMEA要求往往会被忽略。
4、杜绝任务超期
时间就是金钱,任何一个项目开发都是有时间节点要求的。FMEA活动同样要遵循这个原则,超出了节点要求,可能会导致成本的上升甚至市场的流失。目前在企业中我们主要存在几类问题:
(1)时间不能匹配项目进度
FMEA开发的时间需要跟项目进度要求的时间相匹配,超出了项目要求的时间就可能导致整个项目的延迟。前文我们说到过FMEA是团队活动,当子系统、子工序的FMEA进度延后时,必然影响总系统、总工序的FMEA完成情况。 
(2)没有有效的任务动态监管 
在使用电子表格管理FMEA的公司里,FMEA项目管理者对项目进行的状态是很难及时了解的,只能通过查看交付物或者交流等方式才能了解FMEA进展的如何。所使用的甘特图,往往也是被动的更新进度。 
(3)缺少评审或评审不及时
PDCA是著名的质量管理理论,FMEA活动同样适用此方法。检查可以很好的帮助我们统一对事项的描述,完善FMEA的遗漏项目,纠正错误的分析等。 
在一些某一人闭门造车就能完成FMEA的公司里,由于缺少FMEA的评审机制或者即使存在也只是流于形式,FMEA的输出质量最终也只受这位造车者的水平、意愿、心情等方面影响。而在有团队的公司,也会存在因对评审者缺少必要的和主动的时效约束而评审延时的问题。 一个好的FMEA是需要多放配合与提高,不要让FMEA软件的使用成为形式主义。
SunFMEA是一款自主研发的基于AIAG-VDA FMEA标准的失效模式和影响分析软件,软件满足新版七步法分析流程,兼具DFMEA和PFMEA,以结构树的方式直观、完整、快速的指导用户完成FMEA分析的整个流程,能够为企业提供系统化、标准化的FMEA解决方案,助力企业提质降本增效。联系我们软件体验,还有一对一培训。快来解锁你的新技能吧。
 
  收起阅读 »

MSA GRR研究时的样本问题及解决策略

按照AIAG 《MSA参考手册》第四版中第95页中的要求,GRR(测量系统的重复性和再现性)研究时应当“取得一个能够代表过程变差实际或预期范围的样本”。我相信那...
按照AIAG 《MSA参考手册》第四版中第95页中的要求,GRR(测量系统的重复性和再现性)研究时应当“取得一个能够代表过程变差实际或预期范围的样本”。我相信那些参考过该手册做过MSA的朋友已经意识到了:这个要求,在新产品开发的阶段是难以满足的!我们先了解一下GRR的3个指标:

捕获1.PNG


其中,

捕获2.PNG


可见,%GRR对过程总变差的指标P/TV,以及对零件变差的指标ndc(分辨率)均会受到零件间变差σp的影响。因此,这就是为什么《MSA参考手册》规定用作评估样本的零件应能代表实际的过程变差或预期变差,这样评价出的测量系统,才能够适用于当前产品的测量。

然而,在新产品开发阶段,测量系统和制造过程是同步开发的,在测量系统的预验收阶段,是没有那么多的产品样本供我们测量的,也就是2-3个样品,甚至还不能满足GRR评估时最少的样本数量5个的要求(注:MSA参考手册中的要求得到至少45个测量值,以确保评估结果的置信度)。

到了测量系统的最终验收阶段,虽然可以满足GRR的样本量的要求,但是这个时候的样本之间的变差也是相当大的,因为过程还远未达到量产时的稳定状态和能力水平!而我们开发的测量系统,是为了用于量产以后的测量的,如果仅仅使用试生产时的产品作为样本来评价GRR,它的这两个指标即使满足了要求(P/TV<=10%,ndc>=5),在量产后,也很可能会因零件变差的减小而不再满足要求的!但是量产后,量具及测量工装已经定型和安装到位了,已经不能推倒重来了!

那么,如何才能避免这种尴尬和被动的局面呢?

在测量系统的预验收阶段,如果用于样本的零件数量不能满足5个的要求,我们就只能评估它的量具能力Cgk了。评价Cgk时,只使用一个样本进行重复测量就可以了。Cgk可以反应测量系统的重复性和偏倚误差,Cg反应测量系统重复性误差,以及在这两个方面满足产品公差要求的能力,如下图所示,

捕获3.PNG


等到了测量系统的最终验证阶段,我们可以使用量产后过程能力指数CP的目标值来导出过程总变差的目标值,使用这个目标值来评估测量系统是否满足预期的测量精度要求,即:
捕获4.PNG

这样,我们可以得到期望的过程总变差的目标值σc,在把试生产时的样品测量完成后,再将这个σc代入到GRR的上述两个指标的计算公式中,用它评价出来的测量系统的指标,就可以适用于量产后过程稳定时产品的测量。

这样,我们就可以成功地避免上面所讲的尴尬和被动的局面了。


但是,如果量产后实际的过程能力相当高,远高于过程能力指数CPK的目标值(如1.33),即过程总变差可能是很小,这样的话,P/TV和ndc的指标值就有可能不能满足要求了(<=10%和>=5)。那么我们还应当升级测量系统吗?升级测量系统,就意味着更换测量仪器,就需要更高的投资!

我在此的看法是:可以根据企业自己的情况来决定是否升级、如何升级。可以分为以下几种情况来考虑:


1、首先来判断指标P/TV和ndc不满足要求(如<=10%),真的是由于过程能力提高了,还是测量系统变差了。判断的方法是:使用GRR对公差的指标P/T,如果这个指标的值相比之前的评估没有增加,那么就说明测量系统没变,而是由于过程能力提高了。

2、如果本来用的就是精度很高的测量仪器,如CMM、OMM等,这样就基本不存在测量系统精度不满足过程能力提高的情况;

3、如果测量系统的指标不能满足实际过程能力的提高,且测量的数据不做统计分析如SPC控制图等,只用于检测产品合不合格,就可以暂时不用升级测量系统。

4、如果测量系统的指标不能满足实际过程能力的提高,但必须要做控制图来监控生产过程,那么就应当升级测量系统。如果不升级测量系统,其分辨率就不能满足控制图的要求,做出的控制图就会存在下面的问题:
捕获5.PNG

5、如果实际的过程能力达到了非常高的水平,如CPK=3.0,那么,如果要求测量系统来适应过程能力,就可能需要巨额的投入去采购高端的测量仪器,管理层不太可能批准的!这个时候,我们甚至连控制图也不做了!

但是,无论是上述哪种情形,我们必须坚守住过程能力目标值这个“底线”,以及在该目标值下对应的测量系统的精度水平。

如何去坚守这个“底线”呢?就是按照MSA的计划,定期抽取产品样本进行测量,使用过程变差的目标值(用CP的目标值推出来)来对测量系统进行评估,看看测量系统有没有变差。 收起阅读 »

为什么你的FMEA总做不好,原因就在这儿!

FMEA(失效模式和影响分析)是目前全球众多优秀企业在设计开发和生产制造领域应用最为广泛的质量风险管控工具,被誉为事前预防的利器。虽然FMEA方法在企业实施已久...
FMEA(失效模式和影响分析)是目前全球众多优秀企业在设计开发和生产制造领域应用最为广泛的质量风险管控工具,被誉为事前预防的利器。虽然FMEA方法在企业实施已久,表面上似乎很重视它,但实际上却是另一回事。要想真正发挥FMEA的作用并非易事,依然有很多需要我们直面的问题……
据统计,89.4%的中国企业推动FMEA一直都得不到很好的实施成效!因此,到目前为止,如何有效进行产品设计和制造的失效预防而不是事后“救火”,仍是企业最头痛的问题之一,以下是根据调研、实践整理出的关于FMEA软件做不好的原因,一起来看看吧。
问题1、FMEA活动时间投入不足
许多公司并未把FMEA作为真正的风险分析工具,只是把FMEA做为一份体系要求的文件来做,为了完成文件而做文件。通常在设计或者过程结束后才开始补文件,经常会以客户开发时间节点太短为由,不愿意花时间来分析风险,一直等到问题发生后才开始补救,反而导致更多的时间和费用的投入。
问题2、缺少真正的员工授权
组织内缺少对FMEA专员授权。多数企业未设FMEA专人专岗,大多数都是兼职。有些情况较好的企业,有FMEA专员,但他/她不是负责这方面的专家,而是错误地把FMEA文件全部交给FMEA专员来做,设计工程师或者制造工程师甚至不参与风险分析。
问题3、FMEA仅仅是某一个人的工作
FMEA工作被分配给某一个人,而不是一个精英团队。机构内,研发部门、制造部、品管部、质量部、货运物流部等部门很少在设计方案之初坐下来一起谈风险性,缺乏合理的内部沟通交流。
问题4、FMEA文件分散未关联
FMEA相关文件很多,但是每个文件的内容都缺乏关联性,而且很多都是重复的,容易造成信息孤岛;同一FMEA中的多个相关文件未打通,如DFMEA和DVP、PFMEA、控制计划等;FMEA文件内容更新不及时,逆向FMEA没有有效实现;缺乏统一的FMEA开发信息协作平台,无法及时沟通横向和纵向信息。
问题5、不以顾客为关注焦点
在审批DFMEA和PFMEA过程中,常常会发觉设计FMEA忽略了顾客的需求,光凭工作经验从类似项目中简单拷贝顾客需求,而没有对顾客需求逐一剖析,当顾客需求变动时,甚至都没有察觉。更无需谈PFMEA,大部分PFMEA并不参照DFMEA。
本期关于FMEA软件的干货分享结束,希望能给大家带来收获,SunFMEA将持续为您带来最新资讯、干货以及FMEA软件产品实操视频教程,轻松做FMEA,就用SunFMEA,还能免费体验呀。

微信图片_20221028165050.jpg

  收起阅读 »

教你如何快速制作 DFEMA,FMEA软件实操看这里

       今天和大家分享的话题是SunFMEA软件实操体验,实操课程兼具DFMEA和PFMEA,严格按照新版FMEA七步法分析流程进行操作,快来一起学习吧。...
 
     今天和大家分享的话题是SunFMEA软件实操体验,实操课程兼具DFMEA和PFMEA,严格按照新版FMEA七步法分析流程进行操作,快来一起学习吧。详情请咨询。
 
 


 

一文说透FMEA软件七步法,让你轻松做FMEA

新版FMEA七步法包括: 步骤一:策划和准备(定义范围,使用了“5T's  、框图、过程框图”等来定义范围) 步骤二:结构分析(结构分析,使用了“...
新版FMEA七步法包括:
步骤一:策划和准备(定义范围,使用了“5T's  、框图、过程框图”等来定义范围)
步骤二:结构分析(结构分析,使用了“边界图、结构树”等来进行结构分析)
步骤三:功能分析(使用了“P图、功能树、功能矩阵图”等来进行功能分析)
步骤四:失效分析(使用了“FE-FM-FC表、失效网图”等进行失效分析)
步骤五:风险分析(全新的严重度、频度、探测度评分标准,取消了RPN,采用AP优先级)
步骤六:优化(确定降低风险的措施、职责、期限,及措施后的风险再评估)
步骤七:结果文件化(完成FMEA文件,向管理层、客户、供应商沟通风险)
前三步为系统分析,包括策划和准备、结构分析及功能分析。
中间三步总结为风险分析和风险缓解,包括失效分析、风险分析及优化。
最后一步形成文件,进行风险交流。

第一步:策划和准备

策划和准备FMEA时,需要讨论五个主题,分别是:

1、FMEA目的
FMEA的目的包括:
评估产品或过程中失效的潜在技术风险;分析失效的起因和影响;记录预防和探测措施;针对降低风险的措施提出建议。
2、FMEA时间安排
说起FMEA的时间安排,我们要先了解哪些情况下会使用FMEA。
新设计、新技术或新过程;
现有设计或过程的新应用;
对现有设计或过程的工程变更。
以上三种情况,我们都是在产品或过程实施之前使用FMEA,所以FMEA需要一定的及时性,否则会影响整体的项目进程。FMEA作为系统分析和失效预防的方法,最好是在产品开发过程的早期阶段启动。
3、FMEA团队
FMEA是一个系统的方法,在实施时通常需要一个团队,团队的成员必须要具备必要的专业知识。
FMEA的团队需要哪些成员?
管理者:拥有决定权,决定风险和措施是否可接受,还要为项目进行提供必要的物力或人力保障。
项目推进人:关键是要做好团队的协调和组织工作。
设计/工艺工程师:所有相关的设计/工艺工程师参与。
采购人员:对原材料以及相应供应商的选择,采购最有发言权。
市场人员:包括负责售后维修、现场安装等服务的人员,是企业直接接触客户的渠道,他们的信息同样重要。
顾客代表:如果条件允许,可以邀请顾客代表参与,首先要满足客户的需求。
供应商:供应商对他们生产的部件最为了解。
技术专家:技术专家的意见是一定要考虑的,这通常是大家容易忽略的问题。
FMEA团队成员组成基于企业自身的条件,如何全面得考虑风险是最终目的。组建好团队后,要分配成员的职责,可能某个角色的责任由不同人担任,也有可能一人承担多个职责。
4、FMEA任务
七步法提供了FMEA的任务框架和交付成果,每个阶段应该由专人评审完成情况,确保每个任务都完成。
5、FMEA工具
目前有许多商业化的FMEA软件可以用于FMEA的实施。当然,采用哪种工具,取决于企业的需求,有实力的企业也可以自行开发。
第二步:结构分析

1、结构分析的目的
对于结构分析,同为FMEA分析的DFMEA和PFMEA,由于分析对象不同,进行结构分析的目的也有所异同:
不同点是:
DFMEA的结构分析是为了将设计识别分解成系统、子系统、组件和零件,以便进行技术风险分析。
PFMEA的结构分析是确定制造系统,并将其分解成过程项、过程步骤和过程工作要素。
相同点是:
DFMEA和PFMEA进行结构分析都要识别每个分解项,以及相互关系,为下一步的功能分析打基础。
2、结构可视化
为了更清楚识别每个分解项,最好的办法是将结构可视化。对于DFMEA,是要将系统结构可视化,常用的方法是利用方块图/边界图、结构树的方法。对于PFMEA,将结构可视化的方法是采用过程流程图和结构树。 
(1)方块图/边界图
方块图/边界图是一种有用的工具,用来描述考虑中的系统及其相邻系统、环境和顾客的接口。这里所指的顾客可能是最终用户,也可能是后续或下游的制造过程。
方块图/边界图需要随着设计的成熟不断完善,制作的大体步骤分为六步:
A. 描述组件和特性;
B. 调整方块以显示相互间的关系;
C. 描述连接;
D. 增加接口系统和输入;
E. 确定边界;
F. 增加相关细节以便确定图表。
(2)流程图
大家对于流程图一定再熟悉不过了,生产工艺流程图是我们常用的流程图。
(3)结构树
结构树是按照层次排列系统要素,并通过结构化连接展示依赖关系。为了防止冗余,每个系统要素只存在一次,每个系统要素下排列的结构都是独立的子结构。
对于DFMEA,“下一较低级别或特性类型”是独立的组件。对于PFMEA,“下一较低级别或特性类型”是过程工作要素,按照鱼骨图的方法,从“人机料法环测”等方面加入相应的过程工作要素。
第三步:功能分析

1、目的

功能分析的目的,就是要确保相应的功能分配到合适的分解项中。这个步骤是随着结构分析完成之后随之进行的,在结构分析时,我们将结构进行可视化处理,再加入功能后就可以实现功能的可视化。 
2、功能的描述
首先,我们还要先弄清楚什么是功能?某一个分解项的功能,描述的是这个分解项的预期用途。在DFMEA中,系统要素的功能是描述这个要素的预期用途。而在PFMEA中,描述的是过程项或过程步骤的预期用途。
每一个分解项可能会包含多个功能,功能描述的清晰准确很重要,试想一下,如果某个部件的功能描述不准确,对它的预期用途表达就不清晰,导致的结果就有可能将之后的分析引到一个错误的方向。
在进行功能描述时,可以参考一个格式:动词+名词。比如:控制速度、传递热量、传输动力、焊接支架等等。以这样的方式描述,是为了表示这些功能是可测量的。
  比如:焊接金属,焊接过程的功能是将金属连接在一起,测量焊接过程的功能指标可以通过检测焊接的结果。
3、要求
判断分解项的功能是否满足预期用途,就是要看是否满足规定的要求。这些要求可能来自内部,也可能来自外部,通常包括:
法律法规的要求;行业规范和标准;顾客要求;内部要求;产品特性;过程特性;
际操作中,我们需要先识别这些要求,将要求与功能对应起来。
4、功能分析
之前我们对结构进行了可视化处理,在做功能分析时,可以在结构图、结构树或流程图中,加入功能要求的描述。
来看设备热熔过程的功能分析,大致如下表:
第四步:失效分析

1、失效

首先我们来看什么是失效。失效是跟功能相对应的,是由功能推导过来的。上一步我们进行了功能分析,说到需要将每个分解项都对应相应的功能。
DFMEA的分析对象是系统或零件的功能,它们的潜在失效模式常见有以下几种:
功能丧失——就是无法操作、突然失效,比如按键失灵;
功能退化——性能随时间损失,比如设备的电池电量会耗尽;
功能间歇——比如设备在操作时,随机开始/停止;
部分功能丧失——性能有损失;
非预期功能——比如设备在没有下达指令的情况下执行了操作;
功能超范围——比如超出设备量程范围;
功能延迟——比如设备不能及时工作。
PFMEA的分析对象是过程的功能,它们的潜在失效模式有:
不符合要求——生产操作过程不符合规程的要求;
不一致或部分被执行的任务——过程检验没有做就将产品流转到下道工序;
不必要的活动——在生产过程中加入不必要的步骤,反而会带来新的风险。
与功能的描述一样,对于失效的描述也要清楚,一般用名词加失效描述组成,比如内包装破损、焊接不稳固。尽量避免使用模糊的描述,比如“不好”、“坏了”、“有缺陷”等等。
一个功能可能有多个失效,所以在做失效分析时,不能只满足找到一种失效,要再问问自己“还有没有可能有其他的失效?”,这一点很重要。
2、失效链
针对每一个失效,需要考虑三个方面内容:
发生了什么失效影响?
失效模式是什么?
为什么会失效?(失效起因)
失效链是由这三个要素组成,三者相关联,如下图所示:
失效影响就是失效模式产生的后果,需要考虑多方面的影响,包括:
最终用户、内部顾客(后续操作)、外部顾客(下一层级/经销商/OEM)、产品、适用的法规、具体的失效影响要看具体生产哪种产品,以及生产的流程是怎样的。
失效模式主要来自于功能。我们对照功能,分析可能出现的多种失效模式是失效分析的关键。
失效起因是失效模式出现的原因,失效模式是失效起因的后果。起因应尽可能简明、完整地列出,以便之后采取针对的措施。
在做DFMEA分析时,我们可以从以下几个方面查找原因:
功能性能设计不充分;
系统交互作用,系统之间的接口连接有问题;
随时间变化造成功能下降或丧失;
对于应对外部环境设计不足;
最终用户的错误使用;
制造设计不可靠。设计制造过程没有经过验证,制造时可能导致部件磨损,出现不合格品却未能检出。
在做PFMEA分析时,我们可以利用鱼骨图法,从人、机、料、环、法、测这几个角度分析:
人员:操作工、维护人员是否经过培训?是否了解SOP的规程?
机器/设备:生产设备、检验设备是否能正常使用?检验设备是否在校准有效期内?
材料:关键原材料、辅料是否有足够的量?是否使用了正确的材料?
环境:对生产环境有要求的产品是否在规定的环境中生产?
法规/标准:是否在法规/标准范围内生产。
测试:原辅料检测、半成品检测、成品检测是否按照规定的要求进行?
3、失效分析
失效分析需要通过回答两个问题将失效影响、失效模式和失效原因联系起来,即:
为什么失效模式会发生?
失效模式出现时,会发生什么?
失效分析同样可以用结构树、结构图的方式列明,这样既方便大家做分析,同时还能留下相应的记录。下面举了个简单的例子:
第五步:风险分析

上一个步骤我们分析了失效模式,并且找到失效影响和失效起因。接下来我们就要进行风险分析,风险分析的目的是通过对严重度、频度和探测度评级进行风险评估,并对需要采取的措施进行优先排序。
严重度评级S
首先我们来看如何进行严重度评级,严重度是失效影响的严重程度。FMEA手册根据失效影响的大小,将严重度分成10级。
在DFMEA分析中,失效都是来自零部件或系统的失效,影响的是最终的产品。所以在进行严重度评级时,是看对产品的影响。 
在PFMEA分析中,失效分析的对象是过程,过程的失效可能会影响到下一个工序,下一层级的产品加工,最终影响到产品的功能。
频度评级O
频度是失效起因发生的频率。频度的大小,跟是否存在预防控制和探测控制有关。采取的控制措施越多,那相应的发生失效的频度就会越低。
预防控制提供信息或指导,是设计的输入。DFMEA可能包括:法规和标准的要求、使用材料的标准、文件的要求、以往的经验等等。PFMEA可能包括:SOP、设备维护、人员培训等等。
探测控制描述的是已建立的验证和确认的程序。DFMEA可能包括:功能性测试、环境测试、耐久性测试、实验设计等等。PFMEA可能包括:随机检验,功能检验、目测等等。
频度的评级,按照手册也同样分成10级。
探测度评级D
探测度是失效起因和/或失效模式的可探测的程度,在于是否有有效和可靠的测试或检验方法探测到失效模式或失效起因。在进行探测度评级时,最主要是要看探测的方式是否成熟和探测的机会。比如:测试或检验的方法都是通过了验证的,那肯定比还没有建立检测方法要更具探测能力。有的失效用目测就能观察得到,肯定比需要仪器检测的探测度要高。
探测度的评级也被分成10级。
措施优先级AP
措施优先级就是在采取降低风险之前,由于资源、时间、技术和其他客观因素的限制,决定采取措施的优先顺序。
判断优先级主要是通过S*O*D得到的数值大小,但是新版手册对此有了新的规定,首先考虑的是严重度,其次是频度,最后才是探测度,这与之前只比较数值的大小不同,避免出现相同数值的乘积而影响到优先级排序。
第六步:优化

首先我们分别从优化的目的和优化的实施来了解的FMEA分析的优化。
1、优化的目的
优化的目的是在风险分析的基础上,确定降低风险的措施并且评估这些措施的有效性。
降低风险就是要降低风险的严重度、降低风险发生的频度或者是提高风险可探测度。
2、优化的实施
在实施阶段,需要做以下五个方面的工作:
确定降低风险的必要措施
分配职责和期限
实施措施
有效性评估
持续改进 

(1)确定降低风险的必要措施
我们前面说到,降低风险要从三个方面入手:严重度、频度和探测度。根据采取措施优先级的原理,优化的顺序也是先要消除或减轻严重度,其次降低频度,最后是提高探测度。
减轻严重度:是相对比较困难的,因为严重度通常都是定性的,很难从根本上降低事件的性质。但是也不是完全做不到,比如电击的伤害最大可能是致死,我们可以将电源的交流电改成蓄电池的直流电,在不影响器械安全和有效的情况下,严重度就大大降低了。
降低频度:我们对设计和过程采取措施大部分是为了降低失效产生的频度,比如易磨损的设备部件采用了更耐磨的材质,增加了部件的使用次数,从而减少因部件磨损导致设备失效的频度。
提高探测度:通过完善检测能力,建立成熟的检测方法来提高探测度。比如,设备在运行时,加入相应指示器,可以提高探测度。
因为会涉及资源配备、人员配合等方面因素,制定的措施需要经过评审后再确定。
  (2)分配职责和期限
将降低风险的工作分配给团队不同成员,并且规定完成的期限。
  (3)实施措施
措施实施是需要跟踪执行的,措施的状态有以下五种:
尚未确定 没有确定的措施;
尚未决策(可选) 措施已经确定,但还没有决定,正在创建决策文件;
尚未执行(可选) 已对措施做出决定,但尚未执行;
已完成 已完成的状态是指措施已经被执行,并且措施的有效性已经被证明和记录,并已经进行了最终的评估。这类似于FMEA的关闭;
不执行 决定不执行某项措施。
措施实施的状态应该记录,以便跟踪管理。
(4)有效性评估
当措施完成时,要重新评估频度和探测度,看实施的措施是否降低频度或者提升探测度。如果效果没有达到目标(该目标是要企业自己设定),那就要尝试采取新的措施,直到风险降低到可接受的水平。
(5)持续改进
我们都知道风险管理是贯穿于产品的生命周期,所以对于风险的分析是要持续进行的,那就需要我们持续改进,降低可能产生的风险。
第七步:结果文件化

“结果文件化”步骤的目的是,针对FMEA活动的结果进行总结和交流。
“将结果文件化”的主要目标是:
对结果和分析结论进行沟通;
建立文件内容;

记录采取的措施,包括对实施措施的效果进行确认、采取措施后进行风险评估;
在组织内部,以及与客户和或供应商之间针对降低风险的措施进行沟通;
记录风险分析和风险降低到的可接受水平。

SunFMEA七步法介绍
第一步:策划和准备
SunFMEA在第一步规划和准备中,对项目的目的、时间安排、团队组建及任务进行管理。确定分析范围和分析对象,管理FMEA的表头信息,利用以往的经验确认基准FMEA,以此作为结构分析的基础。
第二步:结构分析
SunFMEA结构分析功能,利用结构树可快速构建产品结构或确定过程项、过程步骤及工作要素。使分析范围可视化,作为功能分析步骤的基础。
第三步:功能分析
在结构分析基础上,分析出结构元素的功能、要求、产品特性、工序特性,并填写管理各元素的具体属性(如分类、规格等);通过功能矩阵建立各级功能、要求、产品特性、过程特性的关联,功能网可直观展示出各级功能的关联关系。
第四步:失效分析
在功能分析基础上,可快速建立失效和失效链,识别出功能的潜在失效影响、 失效模式和失效原因。
第五步:风险分析
针对每个失效链中的失效影响进行严重度评级、 失效原因进行频度和探测度评级。并对失效原因分配预防控制、对失效原因和失效模式分配探测控制。根据行动优先级表,确定高风险的失效模式。
第六步:优化
软件有措施管理的功能,对高风险的失效,确定降低风险的措施后,为措施实施分配职责和期限,并对措施进行跟踪和执行。实施措施并将其形成文件,包括对所实施措施的有效性的确认以及采取措施后的风险评估,以便再次优化。
第七步:结果文件化
形成多种报告形式,并可导出成Excel文档,可以使你快速通过审查和审核。
收起阅读 »

SunFMEA今日一分钟 | 什么是基础FMEA、什么是家族FMEA

     一分钟带你了解FMEA知识,今天和大家讨论的话题是基础FMEA和家族FMEA。      基础FMEA,也被称为一般、基准、模板、核心、母版或最佳实践...
     一分钟带你了解FMEA知识,今天和大家讨论的话题是基础FMEA和家族FMEA。
     基础FMEA,也被称为一般、基准、模板、核心、母版或最佳实践FMEA等,包含组织前开发过程中积累的知识,传承了更多的经验与教训,可为创建新得FMEA提供基础,通俗的来讲基础FMEA就是前人种树,后人乘凉。
     家族FMEA是基础FMEA的具体化,我们可以将同一个系列的产品做成一个FMEA,因为它们拥有同样的过程及操作,可以使用一个系列FMEA来承载知识,以确保在产品生命周期内知识的积累,并不断的吸取经验教训,确保不会重复发生之前的质量问题。所以我们认为对于将要新开发的新产品或新过程,直接使用家族FMEA或基础FMEA,将大大减少失效分析时间,提升效率。但这里我们需要注意,FMEA团队应关注心新的产品或过程与家族FMEA的差异,我们应将精力集中在异常点上。
收起阅读 »

SunFMEA今日分享| 什么是FMEA软件

        大家好,今天和大家交流一下,什么是FME。           有过FMEA经验的朋友都知道,FMEA就是通过对可能发生的(或/和已经发生的)失...
        大家好,今天和大家交流一下,什么是FME。
 
        有过FMEA经验的朋友都知道,FMEA就是通过对可能发生的(或/和已经发生的)失效模式进行分析与判断其可能造成(和/或已经产生的)后果而产生的风险程度的一种量化的定性分析计算方法,并根据风险的大小采取有针对性的改进,从而了解产品(和/或制造过程)设计能力,达成一种事先预防并实施改进措施改进的方法工具。

       在这个定义里面我们首先要知道失效模式,所谓的失效模式就是产生的一些不合格的现象,比如产品的尺寸不合格,不合格这个就是失效模式。那么尺寸不合格对我们的制造过程中会造成什么影响呢,如果已经组装完成,可能会造成返工,更严重的会导致报废。返工与报废就是失效后果。我们根据失效后果的影响 ,对于影响大的优先采取措施,这里的措施我们可以理解为通常的预防措施, 其实有了预防措施,在实际生产中,出现这种不良影响会降低。对于FMEA的理解你知道了吗。
收起阅读 »

SunFMEA今日分享 | 企业为什么要用FMEA

大家好,我是SunFMEA质量人,每天1分钟带大家了解FMEA知识~我们都知道产品的开发是需要周期的,从概念设计-产品设计-过程设计-试生产-量产,需要众多环节...
大家好,我是SunFMEA质量人,每天1分钟带大家了解FMEA知识~我们都知道产品的开发是需要周期的,从概念设计-产品设计-过程设计-试生产-量产,需要众多环节。在没使用FMEA软件的时候,问题会随着开发过程的进展而增多,到量产的时候爆发的问题会达到一个峰值。如果我们在产品立项就开始使用FMEA,那么问题就会在开发时候暴露出来,这样对比就回发现,FMEA就是将经验转化为生产力,简单来说很多问题可以通过FMEA的有效应用在开发过程中识别出来,在量产前提前采取有效的预防和措施,这样就可以避免在量产以后再去解决更多的问题。
风险处理费用的10倍法则想必大家都知道,越早识别风险,企业所付出的成本也就越低。FMEA正是风险识别,减少晚期变更的重要方法之一,你了解了吗。
  收起阅读 »

质量是设计出来的,不是测试出来的

FMEA不单纯是一种故障后果防范的工具,更是一种设计理念。也就是说:在你设计电路或者设计软件的时候,就需要考虑某个部件如果损坏了,可能对系统的影响,并且在设计的...
FMEA不单纯是一种故障后果防范的工具,更是一种设计理念。也就是说:在你设计电路或者设计软件的时候,就需要考虑某个部件如果损坏了,可能对系统的影响,并且在设计的时候就能够预见,并制定对策。

可靠性不是靠测试出来问题,解决问题实现的。而是设计出来的,也就是我们经常说的“质量是设计出来的”。在设计的概念阶段、就介入可靠性的设计,而在计划阶段和开发阶段的起始,就需要完成FMEA的分析报告。

SunFMEA是一款基于AIAG-VDA FMEA标准的失效模式和影响分析软件,软件满足新版七步法分析流程,兼具DFMEA和PFMEA,以结构树的方式直观、完整、快速地指导用户完成FMEA分析的整个流程,能够为企业提供系统化、标准化的FMEA解决方案,助力企业提质降本增效。

软件主要应用于轨道交通、汽车、工程机械、航空航天、兵器、电子、船舶、能源和医疗等各个工业领域,能够提供基于工业互联网平台的质量协同设计解决方案。通过构建质量协同设计分析团队,在产品/过程等的策划设计阶段,以树状图方式进行结构或过程分析,找出潜在的失效模式,分析其可能的后果,评估其风险,从而预先采取措施减少失效,实现产品质量可靠性的根本提升。

  收起阅读 »

干货分享丨一招教你轻松搞定FMEA结构分析

专栏简介 [quote] 本专栏将通过FMEA系列文章,从理论出发结合丰富案例分析,深入浅出地带大家系统的学习FMEA相关知识,掌握潜在失效分析方...
专栏简介


本专栏将通过FMEA系列文章,从理论出发结合丰富案例分析,深入浅出地带大家系统的学习FMEA相关知识,掌握潜在失效分析方法并能高效落实进行风险管控和预防,解决产品设计和过程设计可能出现的问题。



97da540e2f3c4695bda840c104d74dc2_noop.png


上一期《干货分享 |做好策划与准备,让FMEA有备无患》文章中,我们提到了FMEA的策划与准备,只有事前做足准备,才能确保做FMEA的时候万无一失。

那么,接下来,我们就要带大家一起了解FMEA七步法中的结构分析。


01

结构分析的目的



结构分析是我们整个FMEA分析过程的基础阶段,也是最为重要的一环。它的目的是将制造系统识别和分解为过程项、过程步骤和过程工作要素,以便进行技术风险分析。


其中过程结构分析的目标是:


  • 分析范围的可视化
  • 结构树/过程流程图
  • 识别过程步骤和子步骤
  • 顾客或供应商工程团队之间的协作(接口职责)
  • 功能分析步骤的基础





02

结构分析的流程



我们可以通过过程流程图或结构树的形式帮助我们进行结构分析,为FMEA提供基础。这一步的分析如果有遗漏,或者没有做好,会影响到我们接下来的工作,所以一定要认真开展。


通过结构树的方式,我们可以将总的产品或过程,过程步骤或者工序,还有过程要素进行排列、归类、划分。


8877f82731e04a76ad07e47888ec543f_noop.png



最高层级是【产品/过程项】,它代表的是过程步骤的合集,是成功完成所有过程步骤后的最终结果。一般,我们将【制程】作为【产品/过程项】,例如冲压、组装、喷涂等。


79b4df3a268c4142b9e6fcf8fa2af906_noop.png



过程步骤则是我们分析的焦点,它是指某一制程下的制造工站或工位。



过程工作要素是结构树的最低层次,是可能影响过程步骤的潜在原因,也就是4M——人员、设备、材料、环境。

4M可能会包含多个类别,每个类别都需要单独列出并且分析。


d3d4888e74124d1fb84b316873bb757f_noop.png




人员是指生产中直接作用于产品相关的人员,如工艺人员,操作人员,检验人员等




设备是指工装、夹具、模具、刀具等类别的总称,要尽可能的分析直接作用于产品的哪些装置,这些都是影响到产品特性变差的原因。




材料是指直接或间接的材料,特别是在组装环节,涉及的所有物料信息都尽可能列出来。




环境是指温度、湿度、气压、霾度等,这一部分的影响,主要体现在对环境有一定要求的物料上,尤其是在产品存放过程中,对环境的要求会更多一些。需要强调一点的是,这里环境影响,指的是外部环境对于过程所产生的影响,而不是指机器设备的工作环境。






只要是对我们的过程可能造成失效的,统统都需要列出来。


通常情况下,4M已经包含了我们过程步骤中的主要潜在要因。当然根据不同的生产过程,也可能有其他的影响要素,例如方法、测量等,但一般我们建议合并至4M中。因为方法其实是由人员/设备来执行的,可以一起罗列;测量一般会有明确的测量工具,也是属于设备的一种。当然这是大多数情况,具体因公司而异,如有必要,也可以拆开罗列。


03

结构分析的案例



我们举一个简单的例子——机壳加工。


根据过程项机壳加工,我们可以列出它的下一步过程步骤:折弯、钻孔、打磨、抛光等等,这些是完成机壳加工所需要的步骤。


微信图片_20221028103941.jpg



如果再以钻孔为例,展开其过程工作要素,这时候我们可以拍摄工站的照片来辅助分析,找到可能影响过程步骤的潜在原因。假设参考下图,我们按照人员、设备、材料、环境这4个方面来看。


28c9728d96194fdc8291d10bf48946bc_noop.png




人员,需要一位操作员,执行钻孔的动作,他的工作对钻孔的成功是有影响的,所以我们在过程工作要素中,我们首先要写上操作员;


设备,需要钻头,同时需要一个夹具将机壳固定,否则可能会在钻孔过程中产生偏移;


物料,需要机壳的原材料,我们假设为铝片,可能会有一些材质上的具体要求;



环境,一般来说钻孔可能对环境要求不多,环境的变化影响不大,所以可以不列,如果有需要的话,也可以加上。



微信图片_20221028103948.jpg





这样,我们结构分析基本就完成了。



最后,我们要知道结构分析中所定义的信息将被用于下一步的功能分析,这一过程是环环相扣的。所以,假如在结构分析中,出现了没有被考虑到的操作,那么在接下来的功能分析中也会缺少。



因此结构分析是整个FMEA分析的基础,要针对FMEA的分析范围和目标来进行定义,并且我们一定要充分考虑各项可能的影响因素。只有前期打牢了基础,后期的FMEA工作才能有序进行。


  收起阅读 »

稳健性设计的逻辑

稳健性设计是正交设计之后的里程碑式的创新,但不能等同于田口方法。 上世纪初农业已有稳健性设计的实践,希望大麦新品种在肥力不同的土地、气候条件不同的地区,仍能...


稳健性设计是正交设计之后的里程碑式的创新,但不能等同于田口方法。
上世纪初农业已有稳健性设计的实践,希望大麦新品种在肥力不同的土地、气候条件不同的地区,仍能有稳产的稳健性。
中国和欧美学者对稳健性设计逻辑的理解与田口方法对稳健性设计逻辑的理解,有共识也有分歧。
国内典型的文献是《正交法与应用数学》(作者张里千),美方文献《试验设计与分布及参数优化》(作者吴建福)。田口方法典型文献是《稳健参数设计》(作者韩之俊)
过去,当产品质量可靠性、稳定性差时,设计产品的工程师认为产品经实验室检验没问题,所以会归罪于批量生产线的质控不严和用户使用不当。
比如在批量生产时,成品各零部件质量特性的变异(噪声)必然使批量成品质量波动变大,
如用公差小的零部件成本高,性价比差。
而零部件组合产生的负面交互效应(噪声),如不做正交试验,可能不知道这种负面交互作用的存在,也不知道正面交互作用的增益。
农村电压忽高忽低的波动(外噪声)会降低电器功能,这种噪声用户无法控制。
而田口先生发现,如在试验中加入模拟噪声的因子,可利用质量特性与参数组合之间的非线性效应,能降低内部干扰因子的影响,利用可控因子抑制噪声因子的交互作用,能减少噪声因子对响应的干扰。只需调整水平组合(即参数设计),基本不增加费用,就能抑制内外噪声对响应的干扰。或者说,对噪声不敏感。而且能确定最合理的公差范围(容差设计,也可理解为价值工程),即是稳健性设计。
田口方法的试验设计和其它DOE方法不同,甚至于相悖。
传统实验室试验时需要排除噪声干扰。而稳健性设计相反,试验时加入模拟干扰响应的内外噪声因子,达到实验室设计的产品质量特性值和受内外噪声干扰下实际使用环境有一致性。
       田口方法正交设计用分内表和外表的直积表,把可控因子正交表称内表,噪声因子正交表称外表。
要求可控因子内表的每一个组合,都要和噪声因子外表的每一个组合一起进行试验。用信噪比度量稳健性,评估出均值趋近目标值,方差又小的最佳的组合。
有学者认为直积表本质是“裂区法”或“分割试验法”,但稳健性设计的内在逻辑,常被误解。
部分析因设计的问题。
多因子案例用部分析因设计是经济的方法。
谢宁方法否定部分析因设计,只认可全因子析因设计。但在可控因子远多于4因子案例时,仅挑选出少量显著性因子组成的全因子析因设计可能遗漏掉不少有价值的信息。比如某案例“A和B都是不显著性因子,但AxB交互作用是显著性因子。”(韩文p55)
谢宁方法忽略了不显著性因子潜在的正面效应,而且统计意义上不显著不等于实际意义上无用。
传统DOE常用二分之一或四分之一的全因子析因设计,然后对活跃因子补充试验,凑成活跃因子群的全因子析因设计数据集合。全因子析因设计对建数模是必需的,其缺点是假设最优水平组合在上述活跃因子群框架内。建立的数模是精简的,但试验水平范围不足够,样本量太小,其数模可能仅仅拟合样本,并非反映总体全貌。
田口方法内表常用部分析因设计,但静态稳健性设计以寻找最优水平组合为目的,所以交互作用混淆不是大问题,其软肋是常用L18大正交表为内表的直积法功效低,内表用部分析因设计会漏掉更优可控因子组合。
      怎样解决部分析因设计信息不完备弱点呢?国内学者建议尽可能用小正交表和饱和正交表。首次试验后,在好的水平基础上再調整出新的水平,进入下一轮新的水平组合试验。
如同“盲人爬山”,探一步,爬一步,经多轮正交试验,但仍能在混杂的信息中找到最优组合的方向。这是“笨”办公,但新的水平组合,会带来新的信息,能逐步逼近最优水平组合。
新的试验水平框架可能带来质变:当水平变动后,可能原不活跃因子和不显著性交互作用会“变性”。
(三)方差分析工具。
传统正交试验,为了筛去不显著性因子,在部分析因设计前提下用方差分析工具。
张里千认为:“部分实施会造成混杂,不足以施行方差分析。”(张文p19)
BOX认为“很多电脑程序都利用方差分析表来分析2k设计和它的部分设计,但是分析这种特殊的设计时,使用ANOVA会非常令人费解,并且没有什么意义。”(《试验应用统计》p115)
而且理论上实施方差分析,残差需以下假设为前提:正态分布、均值为零、数据相互独立、方差相等。(韩文p23)而在实际应用时,很少会验证上述假设。
在实际案例中“噪声分布并不一定要服从正态分布”、“相同的变异性假设在稳健参数设计中不存在。”(韩文p4)
国内的实践证明:“经过逐批少数正交试验便能绕过处理试验误差的统计方法过程,进入到良好的位级组合区域。”(张文p4)
简言之:既然部分析因设计无法精确量化主效应和交互效应,不用方差分析等精确工具,而用极差法、因子趋势图等近似工具分析,用多轮正交试验逐步找到最佳水平组合。
(四)对直积表的争议。
      田口方法的直积表被批判试验次数多,以及内表常用部分析因设计和非正规正交表,造成交互效应混杂被诟病。
直积表的复杂目的是,用试验寻找随机变量噪声因子集合对响应的干扰最小的可控因子组合。这是稳健性设计的核心精髓,可是很少人能理解其科学意义。
     实际上在多因子案例,传统方法有的还用6次重复试验,总次数也不少。
对直积表试验次数太多的缺点,有学者提出用一个“复合噪声因子”取代多噪声外表(韩文p72),这样经济上合算,实际不合理。
“如果研究人员知道噪声因子和控制因子是怎样联合地影响变差的,就没必要实施参数设计试验。”(吴文p410)
又有学者提出用“组合表”替代直积表,即噪声因子和可控因子同在一个全因子析因设计的正交表内。
这“近似”符合直积表,说近似符合,这方法把噪声因子视为常量,而实际是随机变量。多噪声外表常用全因子析因设计,为了能显示“噪声X噪声”交互作用,多噪声之间交互作用比单噪声因子对响应的影响更复杂。而“组合表”只能显示单噪声因子和可控因子之间交互作用。
比如电压和频率波动的噪声因子交互作用比单电压波动对电器功能干扰更大,尤其噪声X噪声对响应的干扰,往往只能在试验中显示。
如多因子多噪声因子案例,因子总数过大,“组合表”只能用部分析因设计时,无法得到全因子析因设计的全面数据,这也是直积法内表常用部分析因设计的缺陷之一。
所以直积法能最精确显示噪声因子群对响应的影响,但有可简化和完善的余地。
如可计算案例,直积法的复杂不成问题。
比如电工类有公式,可用计算方法替代试验。多水平、多因子案例,如用全因子析因设计的直积表,因子和水平数再多也不成问题。
国内学者用对参数约束性计算,又能大大减少计算量,有的案例,一轮约束性试验达到三轮非约束性试验的效果。最后用重复试验验证。
(五)对关注点差异。
      传统DOE目的是回归建模,在实验设计时尽可能分清因子主效应和交互效应,减少混杂。
   而田口方法用逆传统设计:
“任一个含Q(噪声因子)的二因子交互作用是强纯净的”(吴文p132),
传统正交试验, “通常优先考虑的是主效应的估计,而不是两因子交互效应。”(吴文p238)
“将分辨度以及最小低阶混杂准则,应用于参数设计试验是不合适的。”(吴文p407)
 吴建福对稳健性设计逻辑的理解:
稳健性设计认为能抑制噪声的“可控X噪声”的交互效应,和主效应同等重要,而且比“可控X可控”交互效应更重要。
          能抑制噪声的“可控X可控X噪声 ”的高阶交互效应和“可控X可控”交互效                 应同等重要,这颠覆了高阶交互效应可忽略的惯例。(吴文有实例p407)
      (六)可控因子之间交互作用定性问题。
传统DOE认为田口方法最大问题是交互作用混杂,其实最大理论问题是对可控因子之间交互作用的解释。
正交设计解决了显示交互作用问题,想不到田口方法认为可控因子之间的交互作用对稳健性设计是“有害的”。而且又武断认为可控因子和噪声因子交互作用“有利的”。(韩文p4)
在没用稳健性设计之前可控因子和噪声因子交互作用也客观存在的,多数对响应有害的,因此才需要调节可控因子水平组合,抑制噪声因子对响应的干扰,所以不能说可控因子和噪声因子之间交互作用都是有利的。
而稳健性设计找出能抑制噪声因子的非线性响应可控因子,和找到各可控因子水平巧妙组合(其中有可控因子之间交互作用)抑制了噪声因子,这时可控因子和噪声因子交互作用才是有利的。
“A有两个水平A1、A2,当另外一个因子B处于B1水平吋,A1水平的结果和A2水平的结果相比有一个量值;当B处于B2水平时,A1水平的结果和A2水平的结果相比量值有了变化。因此,交互作用就是因子影响结果的不一致或不再现。”(韩文p3)
“交互作用会导致结论不一致或不再现,所以必须尽量避免可控因子之间的交互作用…”(韩文p9)
上述交互作用“有害的”原理实际上生产过程中对可控因子水平控制的难度问题。
对于难以控制的水平,稳健性设计可把可控因子视为噪声因子处理,比如难控制的温度问题。
众所周知,正交设计能显示正面交互作用和负面交互作用:
利用正面交互作用获得1+1大于2的额外增益,对负面交互作用,可改变设计组合减弱之。
吴文中案例,“可控X可控X噪声”交互作用,是可控因子之间交互作用起到抑制噪声作用。
         韩文p29中案例:钢硬度由时间和温度交互作用占33%,请问能消除交互作用吗?
青铜的硬度是銅和锡的交互效应占主导,怎样解释?
(七)处理交互作用混杂问题。
“交互作用是客观存在的,怎样避免或消除呢?回答是交互作用的存在取决于应用什么样的测量系统进行分析。”、“用信噪比,特别是动态特性的信噪比…”(韩文p5)
田口方法认为用特殊正交表、输出特性连续性计量、信噪比度量,“一般情况下,可控因子之间的交互作用会消除殊尽。”(韩文p17)
     “用特殊正交表L12(211), L18(2x37)任意两列的交互作用平均分配在各个列上。”(韩文P6)
L12是飽和设计,交互作用“平均分配在各列上”的说法是自圆其说。实际上各列交互作用混杂、重叠,平均分配说法是难令人信服。
多因子案例用部分析因设计是经济的方法,虽然主效应和交互作用混杂,但其综合的效应,正面或负面效应以及高阶交互效应都反映在响应上,而且是真实数据,仅有试验误差。
          笔者猜测,田口方法对可控因子之间交互作用有害的种种解释,为了回应内表用部分析因设计造成交互作用混杂的质疑,但反而令人困惑不解。
历史上工业应用正交设计远晚于农业,由于工业参数远多于农业,用全因子析因设计经济上有困难,而田口先生勇于在工业上用部分析因设计是大功臣。
国内实践证明,如不建数模,交互效应混杂不影响用多轮正交试验逐步找到最优水平组合。
“数学要经得起思维逻辑严密性推敲或者在其他科学领域应用的有效性来检验,而统计学则更多地要得到实际的直接检验。”(《试验应用统计》译者序)
(八)试验设计方法的科学性是源头。
“分贝值表示的SN比,不仅计算方便,而且可使经对数变换的η(信噪比)更接近于正态分布…同时因素效应大多具有可加性,忽略了交互作用的影响。”(《稳健性设计》曾凤章p63)
上述文献讲清楚了田口方法认为用对数变换后的信噪比能“忽略”交互作用的原理。
实际上传统建模方法常用数据变换,把非线性性转换成简单的线性模式。
       对均值平方和方差对数转换后成线性化的信噪比,这仅是数学形式变化,客观存在   的交互作用还是存在的。如有负面交互作用,也只能調节水平组合来改善,无法用试验后的数据变换来忽略交互作用的本质。
例如学校为改变学习成绩分数至上状态,改用优、良、中、差评估,仍无法摆脱分数评价体制。
田口方法认为稳健性设计就是用信噪比的正交实验设计。对此议提出异议之前,先澄清一个大前提,噪声因子加入正交试验是稳健性设计关键性的源头,但不是信噪比的功劳。
“试验设计能够用来产生良性数据,甚至可以认为,好的试验设计对科学进步是必不可少的。然而,至今我们更多地注意着数据分析。试验设计具有第一重要性,其原因是,数据的信息内容在进行试验时才确定,任何敏感的分析都不能揭示没有体现在数据中的信息。”(《非线性回归分析及其应用》p134)
比如谢宁方法常用“逐个替换”单因子试验,很难显示交互作用。多因子同时变动的正交设计能显示交互作用。
稳健性设计核心是模拟内外噪声因子参于正交试验,以及怎样调整优化水平组合。用信噪比选优,仅属数据分析的一种方法,而且又有缺陷。
在用信噪比选优方法中,对望大、小型案例选优无难度,争议也少,难度在望目型。
田口方法推荐的2步法:先找出信噪比最大的离散因子。但信噪比大,可能均值相对于方差大,但单均值大对望目型无意义。
望目型信噪比:期望平方/方差。
比如均值(期望)平方10,方差1,但目标值是8。所以必须找到把均值趋向目标值,又不影响方差的独立的位置因子。无这位置因子配套,信噪比大无意义,即望目型信噪比缺少一个目标值参数介入。
而且2步法不是都能实现,运气好的正相关案例:调节后响应方差趋小时,均值趋向目标值。反之,有的案例无位置因子时,方差趋小时,均值远离目标值。这时需方差和“离目差”(均值与目标值差)之间的社会质量经济损失大小,找到一个平衡点,田口创立的质量经济损失公式,能解决这难题:如响应是正态分布,分布对目标值的偏差均方=响应分布方差+均值与目标值差的平方。
田口认为质量特性值偏离目标值就发生质量经济损失,以这定义创立的质量经济损失公式(偏差均方),虽不完美,但因包含响应分布的均值、方差和目标值3个参数,就是优于望目型信噪比的原因。
国内学者把田口方法内表称为选优表,方法是对望目型案例内表组合数据直接用偏差均方选优。
某文献25组试验中只有5组偏差均方靠谱,仅甪这5組和噪声组合一一试验,大大减少了试验次数。而如用田口的直积表,有20组在无噪声因子介入响应时,响应已超合格限,再介入噪声因子做试验是做无用功。
      北大学者在实践中证明:“凡偏差均方好(小)时,信噪比也必然好(大),反之不一定成立。”(《正交法和三次设计》P129)在望大望小型案例,偏差均方也适用。
国内有学者认为信噪比适用于动态稳健性设计,用β灵敏度取代均值。静态稳健性设计望目型适用偏差均方。






  收起阅读 »

石油和天然气行业中预测性SPC的威力

本文最初出现在The Minitab Blog 石油和天然气行业涉及持续产出的资本密集型过程。原油等原材料被大规模转化为石油产品,这使得过程控制变得至关重要。...
本文最初出现在The Minitab Blog

石油和天然气行业涉及持续产出的资本密集型过程。原油等原材料被大规模转化为石油产品,这使得过程控制变得至关重要。原材料的化学和物理性质往往具有很大的可变性,这可能会对过程输出产生显著的影响。工程师倾向于利用科学原理和经验来确定可能产生预期结果的工艺设置;然而,这种做法可能会不成功。统计过程控制图(SPC)对于指示变得不稳定的过程非常有用。使用SPC来提醒工艺转变的不利之处在于,可疑产品会同时产生。

制造商将检验原材料的大部分责任转移给了供应商。在收到材料之前,通常是在材料使用前几天或几周,将认证发送给客户是很常见的。如果供应商信息可用于在流程执行前预测流程转变,以考虑缓解措施,情况会怎样?本文解释了如何使用流程模型的操作部署来创建用于此目的的预统计流程图。还有许多其他行业的流程涉及资本密集型设备、连续流程和包含显著变化的原材料。食品、营养补充品和化学品的制造是可以从利用预测性SPC中获益的一些示例行业。

随着Minitab的最新发展,建模技术变得非常强大和易于使用。许多组织使用过程模型进行开发和改进。根据供应商测量和流程输入(由技术人员控制)创建流程模型,以确定与关键输出的关系。工程师找到正确的输入数量和模型类型,以便对输出做出合理的预测。该模型部署在模型操作并连接到新的数据流来进行预测。根据模型预测创建SPC图表,并监控其稳定性。如果识别出不利的趋势,则审查该模型以找到可以被操纵以减轻该趋势的过程变量。所有这些工作都在流程执行之前完成,这对于最小化质量风险非常有效。

该示例涉及16个连续变量,其中一个是由原材料发货前发送的供应商认证提供的度量。有离散变量,包括用于处理的单位和两个主要设置。利用逐步变量选择,从478行历史处理数据中创建了具有良好拟合性(r-square ~ 67%)的线性多元回归模型。

图片1.png


响应优化图说明了最重要的预测变量的杠杆作用。供应商认证措施和初始压力具有陡峭的线性关系,因为值的微小变化会在关键响应中产生显著差异。冷却温度指示较小的响应,并且单位的变化看起来对关键响应有分组影响。

图片2.png


回归模型在预测历史数据的关键响应结果方面做得很好。工程师只需点击一下鼠标,就可以轻松地将模型从Minitab统计软件发布到ModelOps。

图片3.png


收集新数据,以便对关键输出进行预测。该数据包括来自供应商认证的测量值、设置的静态输入值,以及具有已知变化的过程变量的分布生成数据。加工温度是分布生成变量的一个例子。工程师知道过程点的实际温度会随着控制设置而变化。变量的参数是从设备制造商的过程测量点或技术规格创建的。从选定的分布计算变量,以获得实际的处理场景。这与蒙特卡洛模拟中使用的技术基本相同。

Minitab Connect轻松地每小时检索一次数据,并发送给模型运营部以获得预测。利用一个单独的移动范围控制图来监测趋势。确保使用历史参数计算统计控制限值非常重要;使用模拟数据来计算限值是不合适的。下图所示的预测SPC图说明了在最后3次观察之前的预期稳定过程。所有三个最终观察值都低于历史控制下限,如果不稳定的趋势持续下去,可能会产生质量问题。

图片4.png


工程团队审查过程模型,并确定初始压力很容易从90增加到120。模型优化器表明,控制设置的变化可能会减轻由于供应商认证措施的变化而导致的结果下降。在源数据表中完成对初始压力设置的建议更改,并重新启动Connect中的数据提取和制图。最终的图表确实提供了初始压力的变化减轻了供应商措施变化的负面影响的信息。

图片5.png


SPC的概念包括对导致不稳定的变化趋势的及时反应。不稳定的过程包含质量风险,可能导致不合格或降级的材料。在流程执行前根据数据创建流程控制图的能力非常有价值,因为现在有可能在产生任何实际结果之前减轻不利趋势。在石油和天然气行业,由于所生产产品的数量和潜在收入,收益可能高达数百万美元。Minitab解决方案使创建和监控预测性SPC的过程成为质量管理的重要组成部分。

本文最初出现在Minitab博客上。 收起阅读 »

5个分析工具来改善你的机械工程简历、职业和知识

挑战的一部分(和乐趣!作为一名机械工程师,不断寻求改进的机会。无论是你的产品还是过程,机械工程师都有责任找出问题并进行实验来改进它们。是时候花点时间让自己成为更...
挑战的一部分(和乐趣!作为一名机械工程师,不断寻求改进的机会。无论是你的产品还是过程,机械工程师都有责任找出问题并进行实验来改进它们。是时候花点时间让自己成为更好的工程师了吗?学习和利用这些分析工具不仅能帮助你做得更好,还能为你提供更多的工具来应对新的和令人兴奋的挑战。

1. 使用可视化识别产品中的问题。在可能的情况下,收集常用的数据并绘制成图表直方图、帕累托图、热图甚至相关图. Minitab的新图形生成器使您能够轻松地可视化您的数据,并看到您从未考虑过的可视化效果。

2. 使用过程分析工具识别问题。无论您是否已经识别出问题,过程分析工具都可以帮助您回顾过程,以识别失败的地方或改进的机会。故障模式和影响分析,也称为FMEAs,帮助您评估风险和流程图或流程图可以帮助你快速锁定需要关注的区域。

3. 使用控制图评估过程稳定性。机械工程师应该监控他们的过程,以确保质量和一致性。有许多统计工具,如控制图和能力分析这有助于机械工程师监控过程中的变化,并确定过程是否会生产出符合要求规格的产品。Minitab支持的实时SPC提供即时警报和分析,以确保流程稳定、高效和有能力。

4. 使用产品开发工具和方法设计和开发原型。在使用CAD系统之前,你应该使用许多产品开发工具。将产品推向市场需要对客户的需求和需求有充分的了解,以及严格的方法。学习如何使用决策矩阵工具就像质量矩阵或Pugh矩阵或向这家医疗设备制造商学习,他们利用客户总结和Kano模型的声音,以迅雷不及掩耳之势将新产品推向市场。如果您有兴趣了解产品开发方法(以及更多!),请查看我们的结构化问题解决方法周期表.

5. 利用实验设计。实验设计(DOE)是一种系统的、严谨的解决问题的方法,它确保产生有效的、可辩护的和可支持的结论。它可以有效地解决一般问题,以及改善或优化产品设计和制造过程。机械工程师可以使用DOE来:确定适当的设计尺寸和公差,实现稳健设计,描述物理系统行为或确定理想的制造设置。 收起阅读 »

干货分享丨做好策划与准备,让FMEA有备无患

[quote] 【专栏简介】 我们将通过FMEA系列文章,从理论出发结合丰富案例分析,深入浅出地带大家系统的学习FMEA相关知识,掌握潜在失效分析方法并能高效...


【专栏简介】

我们将通过FMEA系列文章,从理论出发结合丰富案例分析,深入浅出地带大家系统的学习FMEA相关知识,掌握潜在失效分析方法并能高效落实进行风险管控和预防,解决产品设计和过程设计可能出现的问题。



fa8594a44a9f84c5af424bb889eb4b975303.png


 上一期《干货分享|FMEA何时做?谁来做?》文章中,我们提到FMEA是一种预防工具,想要做好FMEA,就要建立FMEA团队。

那么当我们已经建立好团队,打算开始做FMEA的时候,应该从哪里着手呢?

根据最新的FMEA标准——AIAG & VDA FMEA手册,FMEA的实施流程共有七步。

今天我们就从第一步策划与准备开始说起。


01

5T法需做足



如果我们将FMEA分析看成一个项目,那么这个项目的时间、节点、工作范围,针对哪几个工段,或者是整条工段,都要在策划阶段确定。

而要确认这些,可以尝试使用5T法。


e7a2377b6edec2ccfd3d7dc1376c4e98.png

 


inTent目的-我们为什么要做FMEA?

当团队成员了解了FMEA的目的和意图时,他们会更好地为完成项目具体目标和总体目标作出贡献。

Time时间-什么时候完成?

我们要强调一下FMEA是一种事前行为,为了体现出它的最大价值,我们就需要尽早的,在产品或过程实施之前开展FMEA工作。因为产品或过程中存在许多潜在失效,我们需要提前分析解决,才能确保量产环节的过程稳健。

Team团队-需要哪些团队成员?

FMEA团队需要由跨职能团队成员组成,成员必须具备必要的专业知识,只有大家积极参与讨论,共同努力,才有可能做好这项工作。

Task任务-需要做哪些工作?

FMEA的工作基本上需要按照七步法的流程来,七步法提供了FMEA整体的任务框架以及交付成果。此外,FMEA可以由内审员、顾客审核员或第三方注册机构进行审核,以确保每项任务都能按照其要求完成。

Tools工具-如何进行分析?

目前市面上有许多成熟好用的FMEA软件,可以帮助我们更快更好地完成FMEA工作。还有包括基础FMEA家族FMEA的建立,企业知识库的创建等等。当然也可以通过传统方式Excel填表格的形式在做FMEA,只是考虑FMEA的有效性、效率上,并不推荐这种方式。



5T法的使用可以帮助我们更好地提前确定好FMEA这个工程的对象及要求,使我们能及时取得最佳效果、避免FMEA返工。


02

FMEA相关文件需协同



在准备阶段同时也需要搜集一些和FMEA工作相关的文件。

caa7ae7b9237719a7d295d3c6fc07160.png


例如产品示意图、图纸、3D模型、技术规范、法律要求、设计FMEA、PFD过程流程图、物料清单(BOM)、类似过程的操作指导书、类似产品的过往FMEA文件等等。

这些文件可以帮助我们确定FMEA的要求,同时,由于之前做过类似产品的FMEA分析,如果涉及到相同或相似的流程,可以拿来参考或直接使用。

除此之外还有一些类似过程的绩效信息,可以帮助我们确定发生度的评价。例如首次质量(FTQ)、返工、报废、顾客投诉、8D报告、过程审核等等,以上这些都是我们的前期准备工作。

这部分关联到的文件会非常多,如果可以通过FMEA软件来进行分析,这些文件就能更好地被管理起来,并且具有更高的协同性,只要是团队成员就能在线查看,甚至在线编辑。

934278c0d32d0d545b4f71d4e0cf71e0.png



03

FMEA的边界需确认



最后还有一点需要注意的就是我们要确定FMEA的边界。

总的来说我们要搞清楚做FMEA的时候哪些需要做,哪些不需要做。假如是供应商提供的零部件,那这一部分的FMEA分析应该是供应商来提供,SQE应当提出相应要求。


FMEA分析的范围可以从工厂的来料验收开始,主要根据客户的要求,如果没有要求也可以不做。但是我们必须对生产过程进行分析,并且从生产过程的第一道工序就要开始。


事前做足准备,才能确保万无一失,以上就是FMEA七步法中的第一步——策划与准备。


下一期,我们将继续一起来聊一聊新版FMEA七步法中的结构分析。 收起阅读 »

用DOE烤出更好的饼干

当他们最喜欢的糖曲奇配方制作的曲奇在烘焙后无法保持节日形状时,一个有质量意识的面包师该怎么办呢?当然是运行实验设计(DOE)啦! [b]从部分因子实验开始[/...
当他们最喜欢的糖曲奇配方制作的曲奇在烘焙后无法保持节日形状时,一个有质量意识的面包师该怎么办呢?当然是运行实验设计(DOE)啦!

从部分因子实验开始

莫德·沃德是Minitab的一名狂热的面包师和平面设计师,他使用实验设计(DOE)工具Minitab统计软件去弄清她糖饼干造型的失礼之处。

在Minitab出色的技术支持团队的帮助下,Maud设计了一个实验,让她能够筛选许多因素,确定哪些是最重要的,然后调整她的过程,以获得她想要的结果——在这种情况下,制作烘烤后保持形状的饼干。

她决定经营一家部分因子实验,一类因子设计,可让您快速、经济地确定过程中最重要的因素。

莫德的实验要求她进行八次运行(或批次饼干)来评估六个因素,每个因素都在两个水平上进行测试:

· 烤箱温度:325华氏度或375华氏度

· 鸡蛋数量:1或2

· 通用面粉:9盎司。或者13.5盎司。

· 小苏打:0.5或1茶匙

· 酒石霜:0.5或1茶匙

· 揉搓和切割后冷却面团:是或否

为了确保面团厚度一致,莫德用木条来防止她的擀面杖将面团压得比1/4英寸(6.35毫米)更薄。然后,她随机地将饼干放置在烤板上,以尽量减少烘烤过程中的不当影响或无意偏差,并在烘烤中途将烤板旋转180度。

因为实验中使用了两种烤箱温度,所以烘烤时间因试验而异。每次试验的实际烹饪时间记录在试验说明表上。

每次试验包括烘烤两托盘饼干。当它们从烤箱中出来时,莫德测量了两个托盘中每种形状的两个样品,以查看整体高度、选定的宽度尺寸或厚度是否有变化。这些尺寸记录在预先打印的表格上,表格上标明了试验编号、试验数据、宽度和高度。莫德计算了她的饼干形状的平均值和标准偏差,然后使用Minitab统计软件来分析数据。

获得美味的DOE结果

在Minitab中进行的高度和宽度测量的分析显示,面粉是饼干扩散的驱动因素。莫德说:“在每一个例子中,面粉量越多,从原始尺寸开始的扩散就越少。”“对饼干厚度的影响主要受面粉和面糊中鸡蛋数量的影响。用两个鸡蛋比只用一个鸡蛋产生的上升更多。”

莫德随后使用Minitab创建了主要效果图,检查一个或多个因素的水平平均值之间的差异。

DOE1.png


DOE2.png


​最后,响应优化器帮助确定导致最小扩散和最大高度的因子设置。

DOE3.jpg


由于Minitab和技术支持团队的帮助,Maud现在相信她设计和分析的实验将在这个假期和未来的更多假期中带来更好的饼干。对我来说,听起来像完美的,美味的结果! 收起阅读 »

质量管理七大方法

1、检查表 检查表就是将需要检查的内容或项目一一列出,然后定期或不定期的逐项检查,并将问题点记录下来的方法,有时叫做查检表或点检表。例如:点检表、诊断表、工作改...
1、检查表
检查表就是将需要检查的内容或项目一一列出,然后定期或不定期的逐项检查,并将问题点记录下来的方法,有时叫做查检表或点检表。例如:点检表、诊断表、工作改善检查表、满意度调查表、考核表、审核表、5S活动检查表、工程异常分析表等。

组成要素 :
① 确定检查的项目;
② 确定检查的频度;
③ 确定检查的人员。

实施步骤 :
① 确定检查对象;
② 制定检查表;
③ 依检查表项目进行检查并记录;
④ 对检查出的问题要求责任单位及时改善;
⑤ 检查人员在规定的时间内对改善效果进行确认;
⑥ 定期总结,持续改进。
 
2、层别法
层别法就是将大量有关某一特定主题的观点、意见或想法按组分类,将收集到的大量的数据或资料按相互关系进行分组,加以层别。层别法一般和柏拉图、直方图等其它七大手法结合使用,也可单独使用。例如:抽样统计表、不良类别统计表、排行榜等。

实施步骤:
① 确定研究的主题;
② 制作表格并收集数据;
③ 将收集的数据进行层别;
④ 比较分析,对这些数据进行分析,找出其内在的原因,确定改善项目。

3、柏拉图
柏拉图的使用要以层别法为前提,将层别法已确定的项目从大到小进行排列,再加上累积值的图形。它可以帮助我们找出关键的问题,抓住重要的少数及有用的多数,适用于记数值统计,有人称为ABC图,又因为柏拉图的排序识从大到小,故又称为排列图。

分类 :
① 分析现象用柏拉图:与不良结果有关,用来发现主要问题。
A 品质:不合格、故障、顾客抱怨、退货、维修等;
B 成本:损失总数、费用等;
C 交货期:存货短缺、付款违约、交货期拖延等;
D 安全:发生事故、出现差错等。
② 分析原因用柏拉图:与过程因素有关,用来发现主要问题。
A 操作者:班次、组别、年龄、经验、熟练情况等;
B 机器:设备、工具、模具、仪器等;
C 原材料:制造商、工厂、批次、种类等;
D 作业方法:作业环境、工序先后、作业安排等。

柏拉图的作用:
① 降低不良的依据;
② 决定改善目标,找出问题点;
③ 可以确认改善的效果。

实施步骤:
① 收集数据,用层别法分类,计算各层别项目占整体项目的百分数;
② 把分好类的数据进行汇总,由多到少进行排列,并计算累计百分数;
③ 绘制横轴和纵轴刻度;
④ 绘制柱状图;
⑤ 绘制累积曲线;
⑥ 记录必要事项
⑦ 分析柏拉图
⑧ 要点:

A 柏拉图有两个纵坐标,左侧纵坐标一般表示数量或金额,右侧纵坐标一般表示数量或金额的累积百分数;
B 柏拉图的横坐标一般表示检查项目,按影响程度大小,从左到右依次排列;
C 绘制柏拉图时,按各项目数量或金额出现的频数,对应左侧纵坐标画出直方形,将各项目出现的累计频率,对应右侧纵坐标描出点子,并将这些点子按顺序连接成线。

应用要点及注意事项:
① 柏拉图要留存,把改善前与改善后的柏拉图排在一起,可以评估出改善效果;
② 分析柏拉图只要抓住前面的2~3项九可以了;
③ 柏拉图的分类项目不要定得太少,5~9项教合适,如果分类项目太多,超过9项,可划入其它,如果分类项目太少,少于4项,做柏拉图无实际意义;
④ 作成的柏拉图如果发现各项目分配比例差不多时,柏拉图就失去意义,与柏拉图法则不符,应从其它角度收集数据再作分析;
⑤ Y 柏拉图是管理改善的手段而非目的,如果数据项别已经清楚者,则无需浪费时间制作柏拉图;
⑥ 其它项目如果大于前面几项,则必须加以分析层别,检讨其中是否有原因;
⑦ 柏拉图分析主要目的是从获得情报显示问题重点而采取对策,但如果第一位的项目依靠现有条件很难解决时,或者即使解决但花费很大,得不偿失,那么可以避开第一位项目,而从第二位项目着手。
 
4、因果图
所谓因果图,又称特性要因图,主要用于分析品质特性与影响品质特性的可能原因之间的因果关系,通过把握现状、分析原因、寻找措施来促进问题的解决,是一种用于分析品质特性(结果)与可能影响特性的因素(原因)的一种工具。又称为鱼骨图。

分类:
① 追求原因型:在于追求问题的原因,并寻找其影响,以因果图表示结果(特性)与原因(要因)间的关系;
② 追求对策型:追求问题点如何防止、目标如何达成,并以因果图表示期望效果与对策的关系。

实施步骤:
① 成立因果图分析小组,3~6人为好,最好是各部门的代表;
② 确定问题点;
③ 画出干线主骨、中骨、小骨及确定重大原因(一般从5M1E即人Man、机Machine、料Material、法Method、测Measure、环Environment六个方面全面找出原因);
④ 与会人员热烈讨论,依据重大原因进行分析,找到中原因或小原因,绘至因果图中;
⑤ 因果图小组要形成共识,把最可能是问题根源的项目用红笔或特殊记号标识;
⑥ 记入必要事项

应用要点及注意事项:
① 确定原因要集合全员的知识与经验,集思广益,以免疏漏;
② 原因解析愈细愈好,愈细则更能找出关键原因或解决问题的方法;
③ 有多少品质特性,就要绘制多少张因果图;
④ 如果分析出来的原因不能采取措施,说明问题还没有得到解决,要想改进有效果,原因必须要细分,直到能采取措施为止;
⑤ 在数据的基础上客观地评价每个因素的主要性;
⑥ 把重点放在解决问题上,并依5W2H的方法逐项列出,绘制因果图时,重点先放在“为什么会发生这种原因、结果”,分析后要提出对策时则放在“如何才能解决”;
Why——为何要做?(对象)
What——做什么?(目的)
Where——在哪里做?(场所)
When——什么时候做?(顺序)
Who——谁来做?(人)
How——用什么方法做?(手段)
How much——花费多少?(费用)
⑦ 因果图应以现场所发生的问题来考虑;
⑧ 因果图绘制后,要形成共识再决定要因,并用红笔或特殊记号标出;
⑨ 因果图使用时要不断加以改进。

5、散布图
将因果关系所对应变化的数据分别描绘在X-Y轴坐标系上,以掌握两个变量之间是否相关及相关的程度如何,这种图形叫做“散布图”,也称为“相关图”。

分类:
① 正相关:当变量X增大时,另一个变量Y也增大;
② 负相关:当变量X增大时,另一个变量Y却减小;
③ 不相关:变量X(或Y)变化时,另一个变量并不改变;
④ 曲线相关:变量X开始增大时,Y也随着增大,但达到某一值后,则当X值增大时,Y反而减小。

实施步骤:
① 确定要调查的两个变量,收集相关的最新数据,至少30组以上;
② 找出两个变量的最大值与最小值,将两个变量描入X轴与Y轴;
③ 将相应的两个变量,以点的形式标上坐标系;
④ 计入图名、制作者、制作时间等项目;
⑤ 判读散布图的相关性与相关程度。

应用要点及注意事项:
① 两组变量的对应数至少在30组以上,最好50组至100组,数据太少时,容易造成误判;
② 通常横坐标用来表示原因或自变量,纵坐标表示效果或因变量;
③ 由于数据的获得常常因为5M1E的变化,导致数据的相关性受到影响,在这种情况下需要对数据获得的条件进行层别,否则散布图不能真实地反映两个变量之间的关系;
④ 当有异常点出现时,应立即查找原因,而不能把异常点删除;
⑤ 当散布图的相关性与技术经验不符时,应进一步检讨是否有什么原因造成假象。

6、直方图
直方图是针对某产品或过程的特性值,利用常态分布(也叫正态分布)的原理,把50个以上的数据进行分组,并算出每组出现的次数,再用类似的直方图形描绘在横轴上。

实施步骤 :
① 收集同一类型的数据;
② 计算极差(全距)R=Xmax-Xmin;
③ 设定组数K:K=1+3.23logN
④ 确定测量最小单位,即小数位数为n时,最小单位为10-n;
⑤ 计算组距h,组距h=极差R/组数K;
⑥ 求出各组的上、下限值
第一组下限值=X min-测量最小单位10-n/27
第二组下限值(第一组上限值)=第一组下限值+组距h;
⑦ 计算各组的中心值,组中心值=(组下限值+组上限值)/2;
⑧ 制作频数表;
⑨ 按频数表画出直方图。

直方图的常见形态与判定:
① 正常型:是正态分布,服从统计规律,过程正常;
② 缺齿型:不是正态分布,不服从统计规律;
③ 偏态型:不是正态分布,不服从统计规律;
④ 离岛型:不是正态分布,不服从统计规律;
⑤ 高原型:不是正态分布,不服从统计规律;
⑥ 双峰型:不是正态分布,不服从统计规律;
⑦ 不规则型:不是正态分布,不服从统计规律。

7、控制图
影响产品质量的因素很多,有静态因素也有动态因素,有没有一种方法能够即时监控产品的生产过程、及时发现质量隐患,以便改善生产过程,减少废品和次品的产出?

控制图法就是这样一种以预防为主的质量控制方法,它利用现场收集到的质量特征值,绘制成控制图,通过观察图形来判断产品的生产过程的质量状况。控制图可以提供很多有用的信息,是质量管理的重要方法之一。

控制图法的涵义:
控制图又叫管理图,它是一种带控制界限的质量管理图表。运用控制图的目的之一就是,通过观察控制图上产品质量特性值的分布状况,分析和判断生产过程是否发生 了异常,一旦发现异常就要及时采取必要的措施加以消除,使生产过程恢复稳定状态。也可以应用控制图来使生产过程达到统计控制的状态。产品质量特性值的分布 是一种统计分布,因此,绘制控制图需要应用概率论的相关理论和知识。

控制图是对生产过程质量的一种记录图形,图上有中心线和上下控制限,并有反映按时间顺序抽取的各样本统计量的数值点。中心线是所控制的统计量的平均值,上下控制限与中心线相距数倍标准差。多数的制造业应用三倍标准差控制限,如果有充分的证据也可以使用其它控制限。

常用的控制图有计量值和记数值两大类,它们分别适用于不同的生产过程;每类又可细分为具体的控制图,如计量值控制图可具体分为均值——极差控制图、单值一移动极差控制图等。

控制图的绘制:
① 控制图的基本式样如图所示,制作控制图一般要经过以下几个步骤:
A 按规定的抽样间隔和样本大小抽取样本;
B 测量样本的质量特性值,计算其统计量数值;
C 在控制图上描点;
D 判断生产过程是否有并行。
② 控制图为管理者提供了许多有用的生产过程信息时应注意以下几个问题:
A 根据工序的质量情况,合理地选择管理点。管理点一般是指关键部位、关健尺寸、工艺本身有特殊要求、对下工存有影响的关键点,如可以选质量不稳定、出现不良品较多的部位为管理点;
B 根据管理点上的质量问题,合理选择控制图的种类:
C 使用控制图做工序管理时,应首先确定合理的控制界限
D 控制图上的点有异常状态,应立即找出原因,采取措施后再进行生产,这是控制图发挥作用的首要前提;
E 控制线不等于公差线,公差线是用来判断产品是否合格的,而控制线是用来判断工序质量是否发生变化的;
F 控制图发生异常,要明确责任,及时解决或上报。

现场抽样法:
制作控制图时并不是每一次都计算控制限,那么最初控制线是怎样确定的呢?如果现在的生产条件和过去的差不多,可以遵循以往的经验数据,即延用以往稳定生产的控制限。下面介绍一种确定控制限的方法,即现场抽样法。

其步骤如下:
① 随机抽取样品50件以上,测出样品的数据,计算控制界限,做控制图;
② 观察控制图是否在控制状态中,即稳定情况,如果点全部在控制界限内.而且点的排列无异常,则可以转入下一步;
③ 如果有异常状态,或虽未超出控制界限,但排列有异常,则需查明导致异常的原因,并采取妥善措施使之处在控制状态,然后再重新取数据计算控制界限,转入下一步;
④ 把上述所取数据作立方图,将立方图和标准界限(公差上限和下限)相比较,看是否在理想状态和较理想状态,如果达不到要求,就必须采取措施,使平均位移动或标准偏差减少,采取措施以后再重复上述步骤重新取数据,做控制界限,直到满足标准为止。

怎样利用控制图判断异常现象:
用控制图识 别生产过程的状态,主要是根据样本数据形成的样本点位置以及变化趋势进行分析和判断。
失控状态主要表现为以下两种情况:
样本点超出控制界限
样本点在控制界限内,但排列异常。
当数据点超越管理界限时,一般认为生产过程存在异常现象,此时就应该追究原因,并采取对策。排列异常主要指出现以下几种情况:
A 连续七个以上的点全部偏离中心线上方或下方,这时应查看生产条件是否出现了变化。
B 连续三个点中的两个点进入管理界限的附近区域(指从中心线开始到管理 界限的三分之二以上的区域),这时应注意生产的波动度是否过大。
C 点相继出现向上或向下的趋势,表明工序特性在向上或向下发生着变化。
D 点的排列状态呈周期性变化,这时可对作业时间进行层次处理,重新制作控制图,以便找出问题的原因。
控制图对异常现象的揭示能力,将根据数据分组时各组数据的多少、样本的收集方法、层别的划分不同而不同。不应仅仅满足于对一份控制图的使用,而应变换各种各样的数据收取方法和使用方法,制作出各种类型的图表,这样才能收到更好的效果。
值得注意的是:如果发现了超越管理界限的异常现象,却不去努力追究原因、采取对策,那么尽管控制图的效用很好,也只不过是空纸一张。
  收起阅读 »

DOE之优化烧烤口味01-创建建模设计

概述 试验设计(DOE)具有难度,但在某种程度上,这种统计方法又非常有用。虽然很容易掌握基本思想:从最少的实验运行中获取最大量的信息 。但这个工...
概述

试验设计(DOE)具有难度,但在某种程度上,这种统计方法又非常有用。虽然很容易掌握基本思想:从最少的实验运行中获取最大量的信息 。但这个工具的实际应用会很令人头疼,即使你是试验设计的长期使用者。基于DOE是一个非常强大且有用的工具,因此我们在Minitab协助菜单中添加了一个DOE工具,使更多人能够更方便地使用设计试验。我将向您展示如何使用协助菜单中的DOE工具来优化您的烧烤味道。

两种试验设计:筛选和优化

要使用“协助”创建试验设计,请打开Minitab并选择“ 协助”>“DOE”>“计划和创建”。您将看到一个决策树,通过在筛选设计和建模设计之间进行选择,帮助您采用顺序方法进行试验过程。

如果您需要考虑很多潜在因子 并且想要确定哪些是重要的,筛选设计很重要。协助将指导您完成测试和分析6到15个因子的主要影响的过程,并确定对响应影响最大的因子。一旦确定了关键因子,就可以使用建模设计。选择此选项,协助将指导您完成分析2到5个关键因子,并帮助您找到流程的最佳设置。

即使您是分析设计实验的老手,您也可以使用协助创建设计,因为协助可以让您为每个实验运行打印出易于使用的数据收集表单。收集并输入数据后,还可以使用通过统计> DOE菜单提供Minitab 核心DOE工具分析在协助菜单中创建的设计 。

创建建模设计优化烧烤口味

对于烧烤,没有那么多变量需要考虑,因此我们将使用协助来创建一个可以优化我们烧烤过程的建模设计。选择协助> DOE> 计划优化试验,然后单击“创建建模设计”按钮。

Minitab提供了一个易于理解的对话框; 我们需要做的只是填写。

首先,我们输入响应的名称和实验的目标。这里的响应变量是“口味”,目标是“最大化响应”。接下来,我们输入我们的因子。我们将研究三个关键变量:

串数,连续变量,低水平为1,高水平为3。

烤架类型,类别变量,低水平为气体,高水平为木炭。

调味料的类型,类别变量,低水平是盐胡椒,高水平为蒙特利尔牛排。

如果我们想要,我们可以选择超过1个实验仿行。仿行只是一组完整的实验运行,因此如果我们进行3次仿行,我们将重复完整实验三次。但是,由于这个实验有16次运行,我们的预算有限制,我们将坚持一次仿行。 当我们单击“确定”时,“协助”会首先询问是否要打印出此实验的数据收集表单:

选择是,您可以打印一个表单,列出每个运行,变量和设置,以及空的响应列。或者,您可以在协助创建的工作表中记录每次运行的结果。但是,使用打印的数据收集表单可以更容易地跟踪您在试验中的位置,以及每次运行时您的因子设置应该是什么。

如果您已将Minitab中的协助用于其他方法(例如:控制图、过程能力分析),您就会知道它旨在揭开您的分析的神秘面纱并使其易于理解。在您创建实验时,智能协助菜单会为您提供报告卡和摘要报告,说明DOE的步骤和重要注意事项,以及您的目标摘要和分析将显示的内容。 收起阅读 »

FMEA基础理论介绍

失效模式分析FMEA是由故障模式分析(FMA)和故障影响分析(FEA)的组成,是重要的可靠性设计方法之一。FMEA是以预防为主,主要目的是查找产品/过程中潜在的...
失效模式分析FMEA是由故障模式分析(FMA)和故障影响分析(FEA)的组成,是重要的可靠性设计方法之一。FMEA是以预防为主,主要目的是查找产品/过程中潜在的失效模式,评估其后果和风险的大小,并制定相应的预防/探测措施,对产品或过程进行修改,避免或减少潜在失效模式的发生,也避免或减轻了事后修改带来的危机和成本。

失效指的是过程、产品或系统部分或全部失去了完成其功能的能力。潜在失效是有可能发生的失效。失效后果指的是失效对零件性能的影响,以及失效对顾客使用带来的影响。FMEA的类型可以分为设计FMEA、过程FMEA、设备FMEA、体系FMEA,最为常用的是设计FMEA和过程FMEA,具体不同点如下:

1、DFMEA:设计(Design)FMEA,用于产品设计中的可靠性分析,分析对象是最终的产品以及相关的零件部、子系统或系统。DFMEA一般从设计概率形成之时或之前开始介入,在产品开发各阶段中,当设计有变化或其他信息有变化时就及时更新,并在样件加工、验证成功之前结束。

2、PFMEA:过程(Process)FMEA,用于过程设计中的可靠性分析,分析对象是新的产品/过程、更改的产品/过程。一般在生产工装准备之前开始使用PFMEA,一直到产品正式投产阶段,投产后还要根据生产过程的变化不断地更新PFMEA 。

3、EFMEA:设备(Equipment)FMEA,用于设备的可靠性分析。

4、SFMEA:体系(System)FMEA,用于系统的可靠性分析。
FMEA作为一种可靠性工具,其作用是:

1、FMEA可以系统性地分析总结在产品设计或过程设计时形成文件;

2、FMEA可以降低产品失效的风险,原因是FMEA找出潜在的失效模式,从而制定了预防/探测措施,预防失效的发生;

3、FMEA的小组成员可以在早期设计过程中完成FMEA分析,提高产品设计的可靠性。小组成员包括设计工程师、质量工程师、工艺工程师等各个部门的负责人,更好地集合团队的智慧;

4、FMEA可以提前采取预防或探测措施,减少或消除设计修改或过程更改带来了更大损失;

5、FMEA是“事前的行为”,而不是“事后的行为”;在FMEA分析中,及时发现风险,可以更加容易、更低成本地对产品或过程进行整改,从而降低事后修改的危机;

6、FMEA的应用(DFMEA和PFMEA)是一个相互作用、永无止境的过程。
FMEA是一个系统的工具,其特点是:

1、一种事前行为;

2、一个循环的过程;

3、一种多方论证的产物;

4、结构化的方法;

5、定性的,评分带有主观性;

6、强调措施的跟踪;

7、降低维修费用,减少召回。

FMEA的逻辑思维是过程方法。所有的工作都是通过过程完成的,所有的过程都有输入和输出,需要开展一系列的活动并且投入相应的资源,输出是过程的结果,可能是期望的,也可能是不期望的;如FMEA的输入是产品的设计要求、技术规范和试验要求等,过程是FMEA的分析过程,输出是FMEA的分析结果。

FMEA是一个风险评估的质量工具,可以识别失效潜在后果的严重性,并为采取降低风险的措施提供了数据支持,用于领导层的决策。FMEA分析过程中,最重要的要求之一是及时性。它不是“事后”操作,而是“事前”行为。FMEA必须在产品设计和过程设计之前进行,这样,产品和过程的变更就更容易实施,并且实施成本更低,从而将后期更改的风险和成本降低到最小,FMEA就可以实现最大价值。

FMEA分析中,经常出现FMEA分析不规范的现象,所以应该注意以下事项:

1、优先分析关键零件的失效分析及风险降低,优先分析设计重点与难点的失效分析及风险降低,优先分析关键产品特性的失效分析及风险降低;

2、在更改不大的产品的FMEA分析时,可以利用同类产品的FMEA,在原有的基础 上补充和完善,注重于其差异性、更改之处以及高风险项目的评估和风险降低;

3、分析中利用头脑风景法列出失效的关联因素,运用质量工具(如亲和图、系统图等)列举出失效模式与失效原因之间的关系;

4、分析时注意回顾以前的同类产品的质量经验教训,举一反三,提高FMEA分析的有效性。

5、风险评估时,频度、探测度的评分很难确定具体分值,这些评分都是相对性 评分,评分中注意各项目评分的相对性,根据一定的理由进行评分,而不只是侧重于它实际的数据。而严重度指的是失效对客户的影响,需要根据评分标准,对失效模式的最大的失效后果进行评分。 收起阅读 »

线下质量峰会分享稿-VDA19清洁度技术

分享一个VDA19清洁度技术管理的小稿件,是在参加一次线下质量峰会的发言,, 欢迎感兴趣的朋友一起交流清洁度技术管控和客户审核应对问题,, 不受积分,自由无限下...
分享一个VDA19清洁度技术管理的小稿件,是在参加一次线下质量峰会的发言,,
欢迎感兴趣的朋友一起交流清洁度技术管控和客户审核应对问题,,
不受积分,自由无限下载,
 

FMEA在汽车开发过程中的实施

一、FMEA概述 FMEA-潜在失效模式与后果分析,作为一种预防性策划工具,其主要目的是发现、评价产品/过程中潜在的失效及其后果;找到能够避免或减少潜在失效发...
一、FMEA概述

FMEA-潜在失效模式与后果分析,作为一种预防性策划工具,其主要目的是发现、评价产品/过程中潜在的失效及其后果;找到能够避免或减少潜在失效发生的措施并且不断地完善。

(1)能够容易、低成本地对产品或过程进行修改,从而减轻事后修改的危机。

(2)找到并实施能够避免或减少这些潜在失效发生的措施。

在十九世纪五十年代开始,FMEA开始在军工产业进行应用;八十年代中期,FMEA进入了汽车产业;九十年代中期,FMEA正式成为ISO的推荐要求和QS16949的认证要求。

FMEA在汽车产业的应用,主要是从美国三大汽车制造公司(戴姆勒-克莱斯勒、福特、通用)开始,这三大汽车制造公司制定并广泛应用于汽车零组件生产行业的可靠性设计分析方法。其工作原理为:

(1)明确潜在的失效模式,并对失效所产生的后果进行评分;

(2)客观评估各种原因出现的可能性,以及当某种原因出现时,企业能检测出该原因发生的可能性;

(3)对各种潜在的产品和流程失效进行排序;

(4)以消除产品和流程存在的问题为重点,并帮助预防问题的再次发生。

二、设计FMEA和过程FMEA

具体的FMEA文件主要有两种,设计FMEA和过程FMEA。

设计FMEA是以零件为分析单位,从一个设计概念形成之时或之前开始,并且在产品开发各阶段中,当设计有变化或得到其他信息时及时不断地修改,并在图样加工完成之前结束。其评价与分析的对象是最终的产品以及每个与之相关的系统、子系统和零部件。进行DFMEA有助于:

· 设计要求与设计方案的相互权衡;

· 制造与装配要求的最初设计;

· 提高在设计/开发过程中考虑潜在故障模式及其对系统和产品影响的可能性;

· 为制定全面、有效的设计试验计划和开发项目提供更多的信息;

· 建立一套改进设计和开发试验的优先控制系统;

· 为将来分析研究现场情况、评价设计的更改以及开发更先进的设计提供参考。

过程FMEA是以生产工序为单位进行分析(对于工艺方法单一和集中的工艺模式,可以以工艺方法为单位先进行基础分析,然后工序FMEA分析时进行调用。),一般在生产工装准备之前、在过程可行性分析阶段或之前开始,而且要考虑从单个零件到总成的所有制造过程。其评价与分析的对象是所有新的部件/过程、更改过的部件/过程及应用或环境有变化的原有部件/过程。PFMEA一般包括下述内容:

· 确定与产品相关的过程潜在故障模式;

· 评价故障对用户的潜在影响;

· 确定潜在制造或装配过程的故障起因,确定减少故障发生或找出故障条件的过程控制变量。

三、FMEA文件建立过程中的问题及原因分析

现在国内很多汽车生产企业都已经非常了解FMEA在产品开发过程中的作用,并且很多企业都身体力行,付诸实践,但由于FMEA的一个集成性和系统性的工作,很多企业在应用时都流于形式,为了编制FMEA而编制FMEA。

在FMEA编制过程中,主要的问题为:

1.编制时机问题:无论是DFMEA还是PFMEA的编制,原则上都应在可行性分析阶段开始进行编制。而实际上 ,现在各主机厂一般都是在数据阶段,与产品设计或工艺设计同步进行FMEA编制。此时,由于数据设计本身的工作量非常大,很难将相关人员组织起来。而FMEA的编制是一个专家研讨行为,这个过程本身是高投入、低产出的(耗费人力资源,又费时),会在很长一段时间内同时占用大量的专家资源,而且好像没有什么直接性的效益,而很多项目在实施过程中,都存在时间紧,任务重的问题,很难在计划中拿出一大段时间实施具体的FMEA编制工作。所以,在很多主机厂都不能充分实施;为了保证项目的其它工作的正常进行,实际上取消了FMEA的小组研讨的工作。

2.小组组织问题:无法真正将FMEA涉及的人员组织起来,形成小组进行研讨编制。通常的情况都是由产品工程师或工艺工程师直接完成FMEA的编制,然后发给相关人员进行意见征询。或者编制完成后,根本不征询相关人员的意见,直接将相关人员的名字写到FMEA的小组名单中,然后直接发布。

这些问题产生的主要原因,实际上就是一点:对FMEA的理解,还是停留在对概念的理解上,没有对FMEA形成深入的理解。

四、FMEA文件建立的关键控制方法

下面,我们针对之前分析的FMEA文件建立过程中的问题,就从保证FMEA编制的充分性出发,谈谈FMEA的编制过程的控制。

首先,我们谈谈FMEA的编制时机和时段。由于FMEA是产品开发和过程开发的指导性文件,所以主要的编制时段是在产品的具体设计之前,比如在产品的概念设计阶段和可行性分析阶段开始。此时产品开发的主要成员,产品工程师和工艺工程师还没有进行实质性的产品数据设计和工艺设计,有充分的时间进行FMEA的编制。同时,此时处于可行性分析阶段,对产品数据和工艺过程的潜在失效模式的分析也正是可行性分析的一项重要内容。充分的FMEA分析,能充分保证产品的可行性。

其次,我们在谈谈FMEA小组开展的管理支持。FMEA的编制,首先是一个系统性的行为,其次才是技术行为,因此,FMEA的推行,实际上相当于一种管理变革。要改变相关人员的工作观念、工作模式。所以,首先要做的是需要强大的管理支持。最高管理者必须充分支持这种模式,特别是从资源上给以充分支持。一般来说,FMEA的研讨,需要调动包括从设计到销售各个环节(包括产品设计、产品制造、质量管理、产品销售、售后服务等等。)的专家人员,使他们从其它工作中解脱出来,能完全投入到FMEA工作中。只有这些人员充分的参与,才能保证FMEA内容论证的充分性。在实际操作时,由于各相关人员都有部门例行性工作,所以需要成立专门的项目组,使其从部门工作中脱离出来,保证有充分的时间参与FMEA的编制。如果条件不充分,不能实现相关人员完全从部门中脱离出来进入项目组,则可以采用视频会议的形式,以保证参与人员的充分性。小组成立后刚刚开展工作初期非常重要,这个时期相当于确立工作模型样板的过程。在这个过程中,管理者、质量体系审核专家都要参与,提供支持并对组织形式、研讨深度等提出意见。这里要着重强调一下,在没有采用FMEA进行潜在失效模式分析之前,设计人员是潜在失效模式分析的主体,而在采用FMEA进行潜在失效模式分析之后,潜在失效模式分析的责任主体就变成了设计人员之外的相关研讨方。因为无论哪种方法,设计人员都会从始至终关心可能的失效模式并力求在自己的设计方案中解决它。在成立了FMEA小组之后,设计人员初始关注的潜在失效模式还会与没有采用FMEA工具时是一样的。这时,相关研讨方对潜在失效模式的丰富作用就非常大了,他们有责任和义务来提出影响自己所代表方面的潜在失效模式。

再次,我们谈谈FMEA分析的对象单元。对于DFMEA来说,其分析的对象是零件的设计,所以进行DFMEA分析时,应该以零件为单元进行分析;而对于PFMEA来说,其分析的对象是零件的制作过程,所以,此时,不宜以零件为单元进行分析,而应以工序为单元进行分析(当工序包含的工艺方法比较单一,可以以工艺方法为单元做一些基础的PFMEA,然后再在工序FMEA分析时引用)。

最后,我们谈谈FMEA的完善与维护,由于FMEA是为产品开发服务的一种文件,一般一个项目有一个FMEA文件对应,所以,在产品开发结束,正式批产后,此项目的FMEA冻结,并应汇总至FMEA数据库中,不需要专门完善。后续在进行新项目开发时,如果调用FMEA库中文件发现FMEA的问题时,可在新项目的FMEA文件中进行完善;如果已批产产品中的部分结构进行工程更改,则可针对工程更改的部分单独进行FMEA分析并补充FMEA数据库;如果已批产产品的工艺进行变更,也可针对工艺变更的部分进行FMEA分析,并相应补充到FMEA数据库中。

总结

FMEA管理是一个质量管理的升级,它将“持续改进”上升到“提前预防”。这要求相关人员要转变思路,改变以往“出了问题再解决”为“在行动前先把所有风险规避掉”的模式。不仅如此,整个的开发流程、开发计划也要为FMEA的编制提供充足的时段和有资质的人员,这样才能保证FMEA编制的操作更加具有实际意义,并且保证FMEA的真正效果。 收起阅读 »

APQP各阶段提交的资料

APQP 5大阶段 每个阶段需要输出的必要资料收好,下面简单列概要需求资料,附件包含详细资料要求,看过工具书和PMP课程后列出来的,需要的同行伙伴参考收藏 P1...
APQP 5大阶段
每个阶段需要输出的必要资料收好,下面简单列概要需求资料,附件包含详细资料要求,看过工具书和PMP课程后列出来的,需要的同行伙伴参考收藏
P1 项目准备阶段 : 输出资料清单, 市场调研,确定顾客输入,成本核算  可行性风险评估,制定产品和过程设计方案,开发合同签订,中标信息传递,项目启动, APQP进度表,APQP问题清单,初始特殊特性清单,P1阶段评审
P2:产品设计开发: 设计功能质量展开 QFD,技术条件  DFMEA,DVP,3D/2D 工装需求 快件 包装标准 样件计划....
P3: 过程设计开发:PFMEA, FC, PCP, layout, WI, SOP, IP ,training, OP, trail run,MSA, CPK,LAB, Audit,阶段评审
P4:产品和过程确认: 试生产报告, PPAP, 系统分析,过程能力研究,阶段问题记录 追踪情况,阶段评审。。。
P5:总结和认定:经验总结,产品移交,整改评审记录 减少变差,客户满意度 收起阅读 »

优秀试验设计的8个专业建议

如果您的工作涉及质量改进,那么您至少听说过实验设计 (DOE)。您可能知道这是优化和改进流程的最有效方式。但我们中的许多人发现 DOE 令人生畏,尤其是如果它不...
如果您的工作涉及质量改进,那么您至少听说过实验设计 (DOE)。您可能知道这是优化和改进流程的最有效方式。但我们中的许多人发现 DOE 令人生畏,尤其是如果它不是我们经常使用的工具。您如何选择合适的设计,并确保您拥有正确数量的因素和水平?收集数据后,如何为分析选择合适的模型?

开始使用 DOE 的一种方法是 Minitab Statistical Software 中的助手。当您有许多要评估的因素时,助手将引导您完成DOE以确定哪些因素最重要(筛选设计)。然后,助手可以指导您完成设计实验,以微调重要因素以获得最大影响(优化设计)。

如果您可以轻松跳过助手,但对于您是否以正确的方式接近 DOE 仍有一些疑问,请考虑 Minitab 技术培训师提供的以下提示。这些资深人士在与 Minitab 客户合作期间以及在成为 Minitab 培训师之前的职业生涯中,都进行了大量设计实验。

1. 通过探索性运行确定正确的变量空间。
在进行主要实验之前执行探索性运行可以帮助您在性能从好到差时识别过程的设置。这可以帮助您确定进行实验的可变空间,从而产生最有益的结果。

2. 传播控制贯穿整个实验以测量过程稳定性。
由于中心点运行通常是接近正常的操作条件,它们可以作为检查过程性能的控制。通过在设计中均匀地间隔中心点,这些观察结果可作为实验期间过程稳定性或缺乏稳定性的指标。

3. 找出帕累托分析的最大问题。
产品负载或缺陷级别的帕累托图可以帮助您确定要解决的问题,从而为您的业务带来最高回报。关注具有高业务影响的问题,通过在所有潜在改进项目中提高其优先级来提高对实验的支持。

图片1.png


4.通过扩大输入设置范围来提高功率。
测试物理上可能的最大范围的输入变量设置。即使您认为它们远离“最佳位置”,该技术也将允许您使用实验来了解您的过程,以便您找到最佳设置。

图片2.png


5. 分馏以节省运行,专注于分辨率 V 设计。
在许多情况下,选择具有全因子 ½ 或 ¼ 游程的设计是有益的。即使效应可能相互混淆或混淆,Resolution V 设计可最大限度地减少这种混淆的影响,从而使您能够估计所有主要效应和双向交互作用。进行更少的运行可以节省资金并保持较低的实验成本。

图片3.png


6. 通过重复提高实验的效力。
功效是检测到对响应的影响(如果存在该影响)的概率。重复次数会影响实验的功效。为了增加您成功识别影响您的响应的输入的机会,请在您的实验中添加重复以增加其功效。

图片4.png


7. 通过使用量化措施来提高你的反应能力。
减少缺陷是大多数实验的主要目标,因此缺陷计数通常用作响应是有道理的。但是缺陷计数是一种非常昂贵且反应迟钝的输出来衡量。相反,请尝试测量与您的缺陷级别相关的定量指标。这样做可以显着减少样本量并提高实验的能力。

8. 研究所有感兴趣的变量和所有关键响应。
因子设计让您可以采用全面的方法来研究所有潜在的输入变量。从实验中删除一个因素会将您确定其重要性的机会减少到零。借助Minitab 等统计软件中的可用工具,您不应该让对复杂性的恐惧导致您忽略可能重要的输入变量。 收起阅读 »

VDA19清洁度管理交流学习

自2017年开始为一些不同行业与产品的企业(金属精密加工、精密电子、独立电池及其材料、汽车玻璃)提供了VDA19清洁度管理的专项培训和现场改善指导服务,期间积累...
自2017年开始为一些不同行业与产品的企业(金属精密加工、精密电子、独立电池及其材料、汽车玻璃)提供了VDA19清洁度管理的专项培训和现场改善指导服务,期间积累了一些知识和经验,希望在此与各位有清洁度管控需求的企业或朋友一起交流、分享与学习,共同提升清洁度在质量管理中的应用能力,,,

  收起阅读 »

热门作者