您还没有绑定微信,更多功能请点击绑定

1分钟教你制作双比例检验

作为公司的采购经理,您需要授权采购二十台新复印机。在根据价格、复印质量、保修和功能对多个品牌进行比较后,将选择范围缩小到两个品牌:X 品牌和 Y 品牌。您认为决定性因素是品牌的可靠度,定义为在购买后一年内需要维修的比率。

由于您的公司已经使用过这两种品牌,因此可获得每种品牌随机选择的 50 台机器的维修历史记录信息。记录显示,六台 X 品牌的机器和八台 Y 品牌的机器需要维修。使用此信息可以指导您选择要购买的品牌。
 
操作:
1, 6SQ统计--估计和假设检验--双比例检验

 
2, 比例1 分母输入 50  事件数输入 6  
    比例2 分母输入 50  事件数输入 8
 备择假设选择  不等于

QQ图片20170208183835.png

 
3, 确认输出结果

QQ图片20170208184209.png


Sheet4_SixSQStat_StDevCIChart.jpg

解释结果

对于此示例,正态近似检验有效,因为对于两个样本而言,事件数都大于四,试验数与事件数之间的差值也大于四。正态近似检验报告 p 值 为 0.564,Fisher 精确检验 报告 p 值为 0.774。这两个 p 值都大于通常选择的 a 水平 。因此,数据与总体比率相等的原假设一致。换句话说,在第一年内需要维修的复印机比率不因品牌不同而存在差异。作为采购经理,您需要根据别的标准来决定采购哪种品牌的复印机。

由于正态分布有效,因此从 95% 置信区间 中可以得出相同的结论。由于零位于置信区间(-0.0957903 至 0.175790)之内,因此可以得出结论,数据与原假设一致。如果您认为置信区间太宽,并且未提供有关 p1-p2值的精确信息,则可能需要收集更多数据才能获得差值的更好估计。
 
Excel案例数据
http://pan.baidu.com/s/1i5AXSRN​
 

0 个评论

游客无法查看评论和回复, 请先登录注册