焊接技术资料4
氮气回流焊接的最古老动机就是前面所提到的改善表面张力的优点,通过减少缺陷而改善焊接合格率即是归功于它。其它的好处包括:较少的锡球形成、更好的熔湿、和更少的开路与锡桥。早期的SMT手册提倡密间距的连接使用氮气,这是基于科学试验得出的结论。可是,这测试是实验室的试验,即,“烧杯试验”与实际生产的关系,没有把使用氮气的成本计算在内。
应该记住,在过去十五年,炉的制造商已经花了许多钱在开发(R&D)之中,来完善不漏气的气体容器。虽然当使用诸如对流为主的(convection-dominant)这类紊流空气时,不容易将气体消耗减到最小,但是有些制造商使用高炉内气体流动和低氮气总消耗,已经达到非常低的氧气水平。这样做,他们已经大大地减低了使用氮气的成本。
随着连接的密度增加,过程窗口变小。在这个交接口,在有CSP(chip scale package)和倒装芯片(flip chip)的应用中使用氮气是很好的保证。
双面回流焊接
人们早就认识到的SMT的一个优点是,元件可以贴装在基板的两面。可是,问题马上出现了:怎样将前面回流焊接的元件保持在反过来的一面上完好无损,如果第二面也要回流焊接?人们已经采取了无数的方法来解决这个困难:
· 一个方法是有胶将元件粘在板上,这个方法只用于波峰焊接无源元件(passive component)、小型引脚的晶体管(SOT)和小型引脚集成电路(SOIC)。可是,这个方法涉及增加步骤和设备来滴胶和固化胶。
· 另一个方法是为装配的顶面和底面使用两种不同的焊锡合金,第二面的锡膏的熔点较低。
· 第三个方法是企图在炉内装配板的顶面和底面之间产生一个温度差。可是,由于温度差,基板Z轴方向产生的应力可能对PCB结构,包括通路孔和内层,有损耗作用。在有些应用中,虽然这种应力可能是有名无实的,但还是需要小心处理。
· 事实上,有更实际的解决办法。人们不要低估熔化金属的粘性能力 — 它远比锡膏的粘性强。 记住这一点,元件绑解的表面积越大,保持它掉落的力就越大。
为了决定哪些元件可用作底面贴附与随后的“回流”,导出了一个比率,评估元件质量与引脚/元件焊盘接触面积之间的关系2:
元件重量(克)
焊盘配合的总面积(平方英寸)
这里,第二面的每平方英寸克必须小于或等于30。
侵入式焊接(Intrusive Soldering)
波峰焊接是一个昂贵的工艺,因为伴随着越来越多的对其废气排放的研究 — 这也是工业为什么要减少波峰焊接需求的一个理由。另一个理由是随着表面贴装元件(SMD)的使用,放用回流焊接传统通孔元件(特别是连接器)的兴趣越来越多。取消波峰焊接不仅经济上和制造上有好处,而且消除了一个处理中心,通过减少周期时间和占地面积使得装配线更流畅。从工艺观点来看,PCB减少一次加热过程,这一点对潜在的温度损害和金属间增长是很重要的。
侵入式焊接(即通孔回流through-hole reflow、单中心回流焊接single-center reflow soldering、引脚插入锡膏pin-in-paste,等)是一个表面贴装和通孔元件都在回流焊接系统中焊接的工艺。采用该工艺可减少波峰和手工焊接。这不是一个“插入式(drop-in)”的工艺 #151; 因为沉积的焊锡用来连接SMD和传统两种元件,控制锡量是必须的。
有人用模板(stencil)来将锡膏印刷到孔内。这里,小心是很重要的,以保证插入的通孔元件引脚不会带走太多的锡膏。其它的使用者将焊锡预成型结合到工业中,来提供足够的锡量给插入的元件。可是,这是一个昂贵的选择,并且不太适合于自动过程。一个更先进的方法是调节围绕电镀通孔周围的焊盘直径与几何形状。最主要的问题是多少锡量才达到“足够的”通孔连接(以及“最佳的”锡膏沉积方法),该工艺还处在试验阶段。
侵入式焊接(Intrusive soldering)也要求回流系统比平常多的加热能力。工艺中增加的通孔元件数量对回流系统的热传送效率的要求更高。许多混合技术装配的复杂表面几何形状要求一个很高的热传送系数,以可接受的温度差来充分地回流装配。虽然大多数对流为主的炉可胜任这个任务,在某些装配上的某些元件的热敏感性可能阻碍其通过回流焊系统。这个情况可能在使用较高熔点的无铅焊锡时,变得更富挑战性。可是,对大多数应用,侵入式焊接具有很大的吸引力,理所当然应该得到考虑。
结论
虽然本文重点在量的回流焊接上面,但相同的原则与惯例对其它的(选择性的)回流工艺,包括激光,都是可应用的。虽然回流焊接是一个高要求的工艺,但它不是“火箭科技” — 必须控制但非常可受的。适当的设备与材料选择,以及理解主要的热、化学和冶金的工艺,将向高合格率的焊接工艺迈出一大步。
基本培训:手工焊接
本文介绍一项基本训练,手工焊接。
一个牢固的焊接点要求使用一个上锡良好的、保持良好的烙铁头,温度在焊锡的液化温度之上大约 100°F。烙铁头上的焊锡改善来从烙铁的快速热传导,预热工件。建立良好的流动和熔湿(wetting)都要求预热。具有良好可焊性特征的焊盘、孔和元件引脚将有助于在最短的时间内形成良好的焊接点。在升高的温度下,时间短是避免对基板的损伤、对焊盘与基板接合的损伤和过多的金属间增长的关键。暴露在焊锡和/或基板的Tg的液化温度之上的重复温度循环中的焊锡点,可能遭受可靠性累积的降级。最好的方法是在少于5秒的时间内完成焊接点,最好是大约3秒钟。这个时间包括要求产生连接的所有必要操作。
工艺过程
一个推荐的手工焊接程序是,快速地把加热和上锡的烙铁头接触带芯锡线(cored wire),然后接触焊接点区域,用熔化的焊锡帮助从烙铁到工件的最初的热传导。然后把锡线移开将要接触焊接表面的烙铁头。有些人推荐首先把烙铁头接触引脚/焊盘;把锡线放在烙铁头与引脚之间,形成热桥;然后快速地把锡线移动到焊接点区域的反面。任何一种方法,如果正确完成,都将给出满意的结果。
这两种技术的目的是要保证引脚和焊盘的温度足够熔化锡线,并形成所要求的金属间的接合。如果在焊接点形成期间,烙铁直接接触和熔化锡线,那么要焊接的表面可能不够热,以提高焊锡流动,形成的焊接点可能不是真正熔湿(wet)到焊盘(pad)、焊接孔(barrel)和引脚(lead)。当工艺过程实施正确的时候,助焊剂将熔化并先于焊锡在将要焊接的表面流动,预先处理表面,因此焊锡将在表面上熔湿和流动,进入缝隙,形成接合。一旦熔湿建立和有充分的焊锡流动形成所希望的焊接点,锡线和随后的烙铁即从焊接点区域移开。
在培训、练习和相对正规的应用之后,这些程序对于有积极性和经验的人员来实行是不太困难的。有些人比其它人更快,更喜欢它,甚至最有经验和最聪明的操作员都会要几天掌握该工艺过程。这个不同来自认为控制的操作。因为这个原因,应该提供给操作员良好的初始训练和定期的更新。这些方面应该包括手工焊接的艺术与构造、控制焊接点形成的因素、和公司机构用于焊接点接受和拒绝的标准。
应该记住,在过去十五年,炉的制造商已经花了许多钱在开发(R&D)之中,来完善不漏气的气体容器。虽然当使用诸如对流为主的(convection-dominant)这类紊流空气时,不容易将气体消耗减到最小,但是有些制造商使用高炉内气体流动和低氮气总消耗,已经达到非常低的氧气水平。这样做,他们已经大大地减低了使用氮气的成本。
随着连接的密度增加,过程窗口变小。在这个交接口,在有CSP(chip scale package)和倒装芯片(flip chip)的应用中使用氮气是很好的保证。
双面回流焊接
人们早就认识到的SMT的一个优点是,元件可以贴装在基板的两面。可是,问题马上出现了:怎样将前面回流焊接的元件保持在反过来的一面上完好无损,如果第二面也要回流焊接?人们已经采取了无数的方法来解决这个困难:
· 一个方法是有胶将元件粘在板上,这个方法只用于波峰焊接无源元件(passive component)、小型引脚的晶体管(SOT)和小型引脚集成电路(SOIC)。可是,这个方法涉及增加步骤和设备来滴胶和固化胶。
· 另一个方法是为装配的顶面和底面使用两种不同的焊锡合金,第二面的锡膏的熔点较低。
· 第三个方法是企图在炉内装配板的顶面和底面之间产生一个温度差。可是,由于温度差,基板Z轴方向产生的应力可能对PCB结构,包括通路孔和内层,有损耗作用。在有些应用中,虽然这种应力可能是有名无实的,但还是需要小心处理。
· 事实上,有更实际的解决办法。人们不要低估熔化金属的粘性能力 — 它远比锡膏的粘性强。 记住这一点,元件绑解的表面积越大,保持它掉落的力就越大。
为了决定哪些元件可用作底面贴附与随后的“回流”,导出了一个比率,评估元件质量与引脚/元件焊盘接触面积之间的关系2:
元件重量(克)
焊盘配合的总面积(平方英寸)
这里,第二面的每平方英寸克必须小于或等于30。
侵入式焊接(Intrusive Soldering)
波峰焊接是一个昂贵的工艺,因为伴随着越来越多的对其废气排放的研究 — 这也是工业为什么要减少波峰焊接需求的一个理由。另一个理由是随着表面贴装元件(SMD)的使用,放用回流焊接传统通孔元件(特别是连接器)的兴趣越来越多。取消波峰焊接不仅经济上和制造上有好处,而且消除了一个处理中心,通过减少周期时间和占地面积使得装配线更流畅。从工艺观点来看,PCB减少一次加热过程,这一点对潜在的温度损害和金属间增长是很重要的。
侵入式焊接(即通孔回流through-hole reflow、单中心回流焊接single-center reflow soldering、引脚插入锡膏pin-in-paste,等)是一个表面贴装和通孔元件都在回流焊接系统中焊接的工艺。采用该工艺可减少波峰和手工焊接。这不是一个“插入式(drop-in)”的工艺 #151; 因为沉积的焊锡用来连接SMD和传统两种元件,控制锡量是必须的。
有人用模板(stencil)来将锡膏印刷到孔内。这里,小心是很重要的,以保证插入的通孔元件引脚不会带走太多的锡膏。其它的使用者将焊锡预成型结合到工业中,来提供足够的锡量给插入的元件。可是,这是一个昂贵的选择,并且不太适合于自动过程。一个更先进的方法是调节围绕电镀通孔周围的焊盘直径与几何形状。最主要的问题是多少锡量才达到“足够的”通孔连接(以及“最佳的”锡膏沉积方法),该工艺还处在试验阶段。
侵入式焊接(Intrusive soldering)也要求回流系统比平常多的加热能力。工艺中增加的通孔元件数量对回流系统的热传送效率的要求更高。许多混合技术装配的复杂表面几何形状要求一个很高的热传送系数,以可接受的温度差来充分地回流装配。虽然大多数对流为主的炉可胜任这个任务,在某些装配上的某些元件的热敏感性可能阻碍其通过回流焊系统。这个情况可能在使用较高熔点的无铅焊锡时,变得更富挑战性。可是,对大多数应用,侵入式焊接具有很大的吸引力,理所当然应该得到考虑。
结论
虽然本文重点在量的回流焊接上面,但相同的原则与惯例对其它的(选择性的)回流工艺,包括激光,都是可应用的。虽然回流焊接是一个高要求的工艺,但它不是“火箭科技” — 必须控制但非常可受的。适当的设备与材料选择,以及理解主要的热、化学和冶金的工艺,将向高合格率的焊接工艺迈出一大步。
基本培训:手工焊接
本文介绍一项基本训练,手工焊接。
一个牢固的焊接点要求使用一个上锡良好的、保持良好的烙铁头,温度在焊锡的液化温度之上大约 100°F。烙铁头上的焊锡改善来从烙铁的快速热传导,预热工件。建立良好的流动和熔湿(wetting)都要求预热。具有良好可焊性特征的焊盘、孔和元件引脚将有助于在最短的时间内形成良好的焊接点。在升高的温度下,时间短是避免对基板的损伤、对焊盘与基板接合的损伤和过多的金属间增长的关键。暴露在焊锡和/或基板的Tg的液化温度之上的重复温度循环中的焊锡点,可能遭受可靠性累积的降级。最好的方法是在少于5秒的时间内完成焊接点,最好是大约3秒钟。这个时间包括要求产生连接的所有必要操作。
工艺过程
一个推荐的手工焊接程序是,快速地把加热和上锡的烙铁头接触带芯锡线(cored wire),然后接触焊接点区域,用熔化的焊锡帮助从烙铁到工件的最初的热传导。然后把锡线移开将要接触焊接表面的烙铁头。有些人推荐首先把烙铁头接触引脚/焊盘;把锡线放在烙铁头与引脚之间,形成热桥;然后快速地把锡线移动到焊接点区域的反面。任何一种方法,如果正确完成,都将给出满意的结果。
这两种技术的目的是要保证引脚和焊盘的温度足够熔化锡线,并形成所要求的金属间的接合。如果在焊接点形成期间,烙铁直接接触和熔化锡线,那么要焊接的表面可能不够热,以提高焊锡流动,形成的焊接点可能不是真正熔湿(wet)到焊盘(pad)、焊接孔(barrel)和引脚(lead)。当工艺过程实施正确的时候,助焊剂将熔化并先于焊锡在将要焊接的表面流动,预先处理表面,因此焊锡将在表面上熔湿和流动,进入缝隙,形成接合。一旦熔湿建立和有充分的焊锡流动形成所希望的焊接点,锡线和随后的烙铁即从焊接点区域移开。
在培训、练习和相对正规的应用之后,这些程序对于有积极性和经验的人员来实行是不太困难的。有些人比其它人更快,更喜欢它,甚至最有经验和最聪明的操作员都会要几天掌握该工艺过程。这个不同来自认为控制的操作。因为这个原因,应该提供给操作员良好的初始训练和定期的更新。这些方面应该包括手工焊接的艺术与构造、控制焊接点形成的因素、和公司机构用于焊接点接受和拒绝的标准。
没有找到相关结果
已邀请:



0 个回复