您还没有绑定微信,更多功能请点击绑定

求助---GR&R分析的数据差异(结果)??

88.8+/-0.4mm,选择10 个产品安排3个人各测3次,用公司EXCEL表格(应该用的是极差的算法)与用MINITAB结果却不相同,请教下
1.用极差算法与minitbab的算法在公式上有什么区别
2.两种方式的ndc的结果却不一样
3.两种方式的GR&R的结论也不一样
4.minitab的各项标示什么意思
-----------------------------------------------------------------------------------------------------------------------
EXCEL结果
见附件

-------------------------------------------------------------------------------------------------------------------------
MINITAB的结果
(包括附件的图)
Gage R&R

Gage R&R Study - ANOVA Method

Two-Way ANOVA Table With Interaction

Source DF SS MS F P
part 9 0.267201 0.0296890 512.753 0.000
op 2 0.000980 0.0004900 8.463 0.003
part * op 18 0.001042 0.0000579 0.008 1.000
Repeatability 60 0.429067 0.0071511
Total 89 0.698290


Alpha to remove interaction term = 0.25


Two-Way ANOVA Table Without Interaction

Source DF SS MS F P
part 9 0.267201 0.0296890 5.38409 0.000
op 2 0.000980 0.0004900 0.08886 0.915
Repeatability 78 0.430109 0.0055142
Total 89 0.698290


Gage R&R

%Contribution
Source VarComp (of VarComp)
Total Gage R&R 0.0055142 67.24
Repeatability 0.0055142 67.24
Reproducibility 0.0000000 0.00
op 0.0000000 0.00
Part-To-Part 0.0026861 32.76
Total Variation 0.0082003 100.00


Process tolerance = 0.8


Study Var %Study Var %Tolerance
Source StdDev (SD) (6 * SD) (%SV) (SV/Toler)
Total Gage R&R 0.0742578 0.445547 82.00 55.69
Repeatability 0.0742578 0.445547 82.00 55.69
Reproducibility 0.0000000 0.000000 0.00 0.00
op 0.0000000 0.000000 0.00 0.00
Part-To-Part 0.0518275 0.310965 57.23 38.87
Total Variation 0.0905555 0.543333 100.00 67.92


Number of Distinct Categories = 1


Gage R&R for Dim1


---------------------------------------------------------------------------------------------------------------------------------

原始数据:
1 1 88.69
1 1 88.79
1 1 88.85
2 1 88.79
2 1 88.66
2 1 88.80
3 1 88.81
3 1 88.94
3 1 88.96
4 1 88.82
4 1 88.68
4 1 88.78
5 1 88.84
5 1 88.78
5 1 88.66
6 1 88.79
6 1 88.80
6 1 88.93
7 1 88.95
7 1 88.81
7 1 88.69
8 1 88.77
8 1 88.84
8 1 88.80
9 1 88.65
9 1 88.81
9 1 88.79
10 1 88.94
10 1 88.96
10 1 88.80
1 2 88.70
1 2 88.80
1 2 88.85
2 2 88.80
2 2 88.66
2 2 88.81
3 2 88.81
3 2 88.93
3 2 88.96
4 2 88.82
4 2 88.69
4 2 88.79
5 2 88.86
5 2 88.80
5 2 88.65
6 2 88.81
6 2 88.80
6 2 88.93
7 2 88.94
7 2 88.83
7 2 88.69
8 2 88.78
8 2 88.85
8 2 88.81
9 2 88.65
9 2 88.80
9 2 88.81
10 2 88.94
10 2 88.95
10 2 88.81
1 3 88.69
1 3 88.80
1 3 88.85
2 3 88.81
2 3 88.66
2 3 88.81
3 3 88.81
3 3 88.94
3 3 88.95
4 3 88.81
4 3 88.69
4 3 88.79
5 3 88.84
5 3 88.80
5 3 88.65
6 3 88.82
6 3 88.81
6 3 88.95
7 3 88.95
7 3 88.81
7 3 88.70
8 3 88.80
8 3 88.86
8 3 88.80
9 3 88.66
9 3 88.81
9 3 88.82
10 3 88.94
10 3 88.96
10 3 88.83
EXCEL结果.jpg minitab结果.jpg
对“好”的回答一定要点个"赞",回答者需要你的鼓励!
已邀请:

fornewjob (威望:0) (江苏 苏州) 机械制造 工程师

赞同来自:

哈哈,自己发现问题了。原来是数据排列的问题,在EXCEL中是对的。复制到minitab中时候就错了。实际原始数据应该是
1 1 88.69
1 1 88.68
1 1 88.69
2 1 88.79
2 1 88.78
2 1 88.77
3 1 88.85
3 1 88.84
3 1 88.84
4 1 88.79
4 1 88.78
4 1 88.80
5 1 88.66
5 1 88.66
5 1 88.65
6 1 88.80
6 1 88.79
6 1 88.81
7 1 88.81
7 1 88.80
7 1 88.79
8 1 88.94
8 1 88.93
8 1 88.94
9 1 88.96
9 1 88.95
9 1 88.96
10 1 88.82
10 1 88.81
10 1 88.80
1 2 88.70
1 2 88.69
1 2 88.69
2 2 88.80
2 2 88.79
2 2 88.78
3 2 88.85
3 2 88.86
3 2 88.85
4 2 88.80
4 2 88.80
4 2 88.81
5 2 88.66
5 2 88.65
5 2 88.65
6 2 88.81
6 2 88.81
6 2 88.80
7 2 88.81
7 2 88.80
7 2 88.81
8 2 88.93
8 2 88.93
8 2 88.94
9 2 88.96
9 2 88.94
9 2 88.95
10 2 88.82
10 2 88.83
10 2 88.81
1 3 88.69
1 3 88.69
1 3 88.70
2 3 88.80
2 3 88.79
2 3 88.80
3 3 88.85
3 3 88.84
3 3 88.86
4 3 88.81
4 3 88.80
4 3 88.80
5 3 88.66
5 3 88.65
5 3 88.66
6 3 88.81
6 3 88.82
6 3 88.81
7 3 88.81
7 3 88.81
7 3 88.82
8 3 88.94
8 3 88.95
8 3 88.94
9 3 88.95
9 3 88.95
9 3 88.96
10 3 88.81
10 3 88.81
10 3 88.83

1 个回复,游客无法查看回复,更多功能请登录注册

发起人

扫一扫微信订阅<6SQ每周精选>